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Abstract. A new approach to modelling chains of onion-like structures, based
on a recently proposed realization of δ′-point interactions by chains of onion-
like geometric scatterers, is developed and rigorous expressions for the effective
masses of both electrons and holes in such structures are derived. The approach
is applied to onion-like fulerene structures. Numerical analysis is performed
and the values of the effective masses thus obtained are in agreement with ex-
perimental estimates for fullerene polymers. The drastic differences between
these effective masses and those in chains comprising single atoms modelled by
δ-point interactions is explained.

PACS number: 72.80Rj

The electronic band structure of chains of C60 molecules was usually computed
either by using the first principle methods [1] or on the basis of semi-empirical
models [2]. Relevant measurements confirmed the one-dimensional charac-
ter of such structures [3]. It was also shown that when the distances between
the fullerene chains in solids are sufficiently long their electronic structures re-
main definitely one-dimensional. The discovery of concentric-shelled nested
fullerenes [4] and a range of fullerene-related graphitic onions [5-6] opened new
challenging perspectives in this field, thus suggesting the need of new simple but
still realistic one-dimensional models for chains of such onion-like clusters.

In this situation it is worth recollecting that Avron et al. [7] have recently raised
a model of complicated “geometric scatterers in the form of onions” arranged in
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a periodic chain. The relevant energy-band structure of this abstract construction
approximates in certain limited cases that one of a periodic array of the some-
how exotic δ′-point interactions [8]. There is little resemblance between this δ′

interaction and what its name suggests, so that it should not be confused with
the derivative of the Dirac δ-function [9]. Contrary to earlier somewhat contro-
versial realizations [10-12], Avron’s new realization of the δ′-point interaction
is going to be considered as a new paradigm in mathematical physics [13], the
only flaw in such an assertion being the lack of relevant application to a working
model of real physical object.

In what follows, we show that it is possible to adapt Avron’s abstract construc-
tion to model chains of concentric-shell onion-like fullerene-type structures with
an eye to their electronic energy band characteristics. In support of our choice
of the effective-mass approach, it should be noted that fullerene is known to
bond covalently with itself in polymers [14], and some rough estimates for the
effective masses of the carriers in solid C60 have already been given [15].

The best method for the discussion of periodic structures seems to be the transfer
matrix approach [16-18]. As we have shown [19], the most general expression
for the effective masses of the carriers at the edges of allowed energy bands may
be given in the form

m∗
k=0,π/a = ∓�2
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dE
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2

TrM(E)
]
, (1)

provided the transfer-matrix M(E) for the relevant structure with lattice con-
stant a is well defined. Here �k is the electron crystal momentum and the simple
roots of the equations TrM(E) = ±2 correspond to the energy-band edges.

For the periodic attractive δ-point interactions the transfer-matrix approach to
the effective-mass notion was already developed in our papers [19-21].

For the case of periodic δ′-point interactions totally different picture emerges.
One finds

1
2

TrM(x) = cos x − Bx sinx, (2)

where x = a(2mE)1/2/� and B, a parameter characterizing the structure un-
der consideration, is related to the “strength” β of the δ′-point scatterer and the
lattice constant a by B = β/2a. From equations (1) and (2) we finally arrive at

m∗
m

∣∣∣
k=0,π/a

= ±[
(1 + B).x−1. sin x + B cos x

]
, (3)

which defines the effective masses m∗
e of the electrons and m∗

h of the holes for
the respective band edges (m is the free-electron mass).

Numerical analysis of equation (3) leads to the behaviour of the effective masses
shown in Figure 1, which demonstrates the dependence of the effective masses
(calculated for the first energy gap) on the value of B. It is seen that the well
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known empirical relation m∗
h > m∗

e is a rigorously obtained result for models
comprising δ′-interactions. Recently, we have also derived an inequality of this
type for models with δ-point interactions [21], however in the latter case the
values of the corresponding effective masses differ by an order of magnitude,
as is seen from a comparison of the present Figure 1 with Figures 1, 2 and 3
from [21]. What is more, for the simple but rigorously derived model with δ′-
scatterers we are here dealing with, we get surprisingly good agreement with
semi-empirical estimates for the effective masses of the carriers, as given by
Saito & Oshiyama [15]. Namely, taking m∗

e/m = 1.3, we obtain from Figure 1
that m∗

h/m = 2.4, which is very close to the mean value of the relelvant effective
masses of the heavy and light holes, i.e. (3.4 + 1.5)/2 = 2.45.
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Figure 1. Effective masses of electrons and holes, calculated for different models charac-
terised by the corresponding values of B.

The next question of interest is to clarify the possibility of using models with
higher energy gaps. This might be essential e.g. for polymers comprising
concentric-shell clusters of the type Si60@C60, see Gong and Zheng [22]. Fig-
ure 2 presents the effective masses of electrons and holes calculated for the first
five energy gaps by a fixed positivevalue of B. Curiously enough, the essen-
tial characteristic feature of this type of model is that, contrary to the case of
models with δ-function potentials, the effective mass of the electronsremains
constant and is given by m∗

e/m = B for all energy gaps. It is the effective mass
of the holes that depends on the gap number n, and its value tends to m∗

e with
increasing n.

Note that models with B > 0 correspond to energy-band pictures with E > 0
for all band edges. However, a physically meaningful situation may also arise
for certain negative values of B, see [8]. For example, in the particular case
B = −0.5, the effective mass of the holestakes the constant value |B| = 0.5,
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Figure 2. Effective masses of electrons (�) and holes (•) calculated for the first five
energy gaps by B = 0.50.
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Figure 3. The same as in Figure 2 for the first five energy gaps by B = −0.50.

while the effective masses m∗
e of the electrons increase with n and tend to the

value of m∗
h, compare Figures 2 and 3.

The demonstrated behavior of the effective masses is quite different from what is
known for structures modelled by periodic δ-interactions. This difference corre-
sponds to the difference in the energy-band pictures characterizing the two types
of structures. In the case of periodic δ′-interactions the widths of the allowed
bands remain approximately constant (their value being determined by the value
of |B|), while the widths of the gaps increase with increasing n.

It should be noted that the new concentric-shell cluster Si60@C60 predicted re-
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cently [22] offers new possibilities for the formation of the above considered
fullerene-type polymers of concentric-shell onion-like clusters. Even chains of
the recently discussed nested quasi-spherical fullerenes with additional heptag-
onal rings may be approached in a similar way due to the fact that, although
the radii ri in such quasi-spherical structures fluctuate, all fluctuations of ri lie
within a very small range [6].

Last but not least, as regards the complete theory of fullerene polymers in 3-
dimensional Euclidean space, it is our feeling that the ordering of carbon atoms
on 2-dimensional closed curved surfaces forming an onion-like fullerene-type
structure, and the ordering of such clusters in a 1-dimensional chain of onion-like
scatterers may be considered as one more example of hierarchy, i.e. different
ordering schemes at different scales.

Of course, further work, both theoretical and experimental, is needed to clarify
the limits of the proposed approach. We believe that the above introduced ef-
fective mass approach to structures modelled by chains of onion-like geometric
scatterers is offers an attractive theoretical approach to the new field of onion-
like fullerene-type polymers and their electrical properties.
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