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Abstract. I discuss briefly some physical systems where extrinsic curvature
plays a role.
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In the mid-1980s Polyakov [1] suggested that “fine structure” could be added
to string dynamics by including an extrinsic curvature term in the world sheet
action.

A =

∫

M2

(
T + S KαβK

αβ
)√

gd2x

where T is the tension, S is the coefficient of the term that “stiffens” the string,
i.e. adds “rigidity” to the world sheet, and where

Kαβ = −n̂ · ∂2~r

∂xα∂xβ

is the second form that encodes the extrinsic curvature of the world-sheet. In this
last expression, ~r is a point on the world-sheet and n̂ is a local unit normal to the
sheet. The local dynamics (i.e. equations of motion) of the string are modified
significantly by this rigidity. In collaboration with Ghassan Ghandour, Charles
Thorn, and Cosmas Zachos, I studied the interesting effects this would have on
Regge trajectories [2], but that is not the subject of this talk.

Soon after studying the modified Regge trajectories, I went on sabbatical in the
fall of 1986, to visit the ITP at Stony Brook. It occurred to me while there
that perhaps Polyakov’s rigidity term could be obtained just as it is in structural
engineering by distributing material transverse to the world sheet. I remind you
that this is how are stiffened to resist bending (see Figure 1).

But a transverse thickening of the string world-sheet would just turn it into a
membrane world-volume. So I spent some time thinking about membranes,
supermembranes, and all that. I gave several talks about my work, including a
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Figure 1.

weekly lecture course at Yale in the first half of 1987, and I wrote a couple of
papers on the subject [3]. The last of these was based on a lecture I gave at a
conference in Copenhagen during the fall of 1987 while I was a visiting scientist
at CERN.

Unfortunately, my original idea to stiffen the world-sheet did not work. Here’s
why. It takes only a simple calculation to understand what is going on. For
visualization purposes, I work in Euclidean space.

Consider a spherical world-sheet thickened to become a world-volume, namely,
the volume between two concentric spheres of radii r− ε and r+ ε, shown here
in cross-section1 (Figure 2).
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Consider a spherical world-sheet thickened to become a world-volume, namely, the volume

between two concentric spheres of radii r − ε and r + ε, shown here in cross-section.1

The volume of the region between the concentric orange spheres is

V =
4π

3

(
(r + ε)3 − (r − ε)3

)
= 4πr2 × 2ε

(
1 +

ε2

3r2

)
which may be written in a suggestive way as

V = 4πr2
∫ ε

−ε
det

(
1 + y/r 0

0 1 + y/r

)
dy

So, thinking of this as the world-volume of a membrane with surface tension T2, the mem-
brane action would be

A2 = T2V = 4πr2 × 2εT2

(
1 +

ε2

3r2

)
1This simple calculation can be found in the physics literature [4]. I thank Eduardo Guendelman for

bringing this work to my attention.
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The volume of the region between the concentric orange spheres is

V =
4π

3

(
(r + ε)

3 − (r − ε)3
)

= 4πr2 × 2ε

(
1 +

ε2

3r2

)
,

which may be written in a suggestive way as

V = 4πr2
∫ ε

−ε
det

(
1 + y/r 0

0 1 + y/r

)
dy .

So, thinking of this as the world-volume of a membrane with surface tension T2,
the membrane action would be

A2 = T2V = 4πr2 × 2εT2

(
1 +

ε2

3r2

)

In fact this is just the modified action of a string, whose world-sheet is the sphere
of radius r with effective tension

T = 2εT2

and which includes a curvature term given by

C =
Tε2

3r2
.

At first glance, this would seem to be the Polyakov action with S ∝ Tε2, so did
this simple thickening of the world-sheet actually do the job to induce rigidity?

Well, no. Close perhaps, but no cigar! This curvature term actually involves the
intrinsic scalar curvature

R = (K α
α )

2 −KαβK
αβ

and not KαβK
αβ . Viewed as a modified string action, the integral of the in-

trinsic scalar curvature over the world-sheet would give the topological Euler
characteristic, and would not modify the local dynamics of the string.

To confirm this, instead of a sphere consider a right circular cylinder of length
L and radius r. As a surface, this has no intrinsic curvature, i.e. R = 0, since
one of the radii of curvature is infinite, although it does have extrinsic curvature
KαβK

αβ = 1/r2. Repeating the previous simple calculation for concentric
cylinders now gives a volume between the cylinders of

V = π
(

(r + ε)
2 − (r − ε)2

)
L

= 2πrL× 2ε

= 2πrL

∫ ε

−ε
det

(
1 + y/r 0

0 1 + 0

)
dy .

175



Thomas Curtright

Thus the action for this membrane world-volume would be

A2 = T2V = 2πrL× 2εT2

(
1 +

0

r2

)
.

Viewed as a string with a cylindrical world-sheet, this again has an effective
tension T = 2εT2, but now there is no induced curvature term.

I considered higher dimensional generalizations, but the story was always the
same, when computed as above: No induced Polyakov curvature term. Only
intrinsic curvature terms are obtained.

However, later on Ulf Lindstrom rose to the challenge [5] and pointed out how
Polyakov’s extrinsic curvature term could be obtained by embedding the mem-
brane in an extra spatial dimension, and then taking a limit where both the size
of the extra dimension and the thickness of the membrane world-volume simul-
taneously went to zero. The calculation above is not applicable in that case, for
reasons that I will indicate below (if they are not already obvious). I have not
checked Ulf’s calculation, but I have no reason to doubt it. While there was a
bit of regret on my part for not having done the calculation that Ulf did, I took
solace in the fact that he gave me some credit for the essential idea. As he said:

Polyakov introduces the rigidity term in the string action in an at-
tempt to find a string that will correspond to QCD in some limit. In
this context it seems natural to try to interpret the rigidity term as a
“memory” of additional dimensions that otherwise play no role in
this limit2. In the present letter we show that the rigidity term in
Polyakov’s rigid string action formally may be obtained via com-
pactification from a higher dimensional membrane.

Although, it would have been even more comforting had he cited one of my
published papers on the subject.

Anyway, how does it go in higher dimensions? If you embed a curved n di-
mensional submanifold into a higher N dimensional Euclidean space (e.g., say,
N = n+1) then for a “tubular” embedding, analogous to what we did above for
concentric spheres and cylinders, the volume element in the full space is given
by

dNX =
√
g dnx det

(
1 + ~y · ~K

)
dN−ny ,

where gαβ , for α, β = 1, . . . , n, is the metric on the submanifold, ~y are points
in the ambient space surrounding the submanifold, and

Kaαβ = −gαγ n̂a · ∂2~r

∂xγ∂xβ
.

Here ~r is a point in the submanifold, and n̂a for a = 1, . . . , N − n are all the
locally orthogonal unit normals to the submanifold. This result was obtained

2This point of view has been emphasized, e.g., in Ref. [6]
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by Weyl, although it is just elementary calculus on manifolds. It is known as
the tube volume formula. Weyl went farther to point out that integrating the ~y
over an isotropic ambient space gives only combinations of the 2nd form matrix
that can be expressed in terms of intrinsic curvatures. All this mathematics is
discussed in books, e.g. [6]. It has also been discussed in the physics literature
[7]3, most recently as a scheme to induce Einstein gravity on four-dimensional
spacetime [8], but always following the same logic that I described above for
strings and membranes.

For simplicity, consider just N = n + 1, as I did in the string/membrane case.
Then in general the effective volume measure on the submanifold for a tubular
embedding is

√
g dnx

∫ ε

−ε
ρ (~r, y) det (1 + y Kn×n) dy ,

where ρ (~r, y) describes a suitable distribution in the ambient space at each sub-
manifold point, ~r. Above I used constant ρ. But if God were a structural en-
gineer (with a gambling problem?) he might have been enticed by something
more like the following, with the submanifold at the center of the “web”4 and
with y indicating the vertical position, say (Figure 3).
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3I thank Ricardo Troncoso for pointing out this paper.
4That’s right, we might have been living on the web all along, well before the internet was

invented.
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In any case, if you take ρ to be an even function of y, then the y integration
produces only intrinsic curvature combinations. Suppressing the ~r dependence
for convenience,

ε∫

−ε

ρeven(y) det(1 + yKn×n)dy =

ε∫

−ε

ρeven(y) +
1

2
R

ε∫

−ε

y2ρeven(y)dy + · · ·

This follows most easily from an eigenvalue expansion of the determinant.

det(1 + yKn×n) = 1 + y

(
n∑

i=1

κi

)
+ y2




n∑

i,j=1
j>i

κiκj


+ · · ·+ yn

n∏

i=1

κi ,

where in diagonal form, at each submanifold point,

Kn×n =




κ1 (~r)
κ2 (~r)

. . .
κn (~r)




It is well-known [9] that the even terms in the eigenvalue expansion of the deter-
minant can be expressed in terms of intrinsic curvature polynomials.

Meanwhile, back in physics ...

Obviously, the Weyl formula is not reliable, and probably breaks down, when
y ≈ min (1/κ), since the volume measure is required to be positive definite.
This is the mathematical nicety that allowed Ulf Lindstrom to obtain a Polyakov
term, I believe.

The leading term,
∫ ε
−ε ρeven (y), would represent an induced (or “emergent”)

cosmological constant, Λ.

The next term, 1
2 R

∫ ε
−ε y

2ρeven (y) dy, is the Einstein-Hilbert term. Note that for
positive definite ρeven (y) the Λ andR terms must have the same sign. (Wikipedia
says they do not, in the real world, but one has to be careful about conventions ...)
All the other even terms in the expansion must also have the same sign, unless
of course ρeven (y) flips sign for some values of y.

From the numerical value of the Einstein coefficient and the present experimen-
tal value of the cosmological constant, one estimates that the “flange depth” is
approximately the size of the observable universe.5 Oh dear!

In principle, some ~r dependence in ρ (~r, y) could account for the anomalous
galactic and cluster rotation curves that are cited as evidence for dark matter.
But so far, I have not been able to carefully check the numbers.

5This brings to mind Mach’s principle, as noted by David Fairlie.
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Finally, if you want a technical problem to investigate, I have not yet found in
the literature the extension of Weyl’s tube formula to superspace. Of course, the
replacement det→ sdet is a no-brainer, but the correct replacement of K in the
above formulas is more challenging. The result given in my paper with Peter van
Nieuwenhuizen [3] seems to be the correct one, even if it leads to a supergravity
action of the form proposed by Arnowit and Nath [10], rather than directly to the
forms found by Ferrara, Freedman, and van Nieuwenhuizen [11], or by Deser
and Zumino [12].
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