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Abstract. In this article, firstly the fluctuation theorems (FT) for expended
work in a driven nonequilibrium system, isolated or thermostatted, as formulated
originally by Crooks and Tasaki, together with the ensuing Jarzynski work–
energy (W–E) relationships, will be discussed and reobtained. Secondly, the
fluctuation theorems for entropy flow due to Evans, Cohen and Morriss with
extensions by many researchers, a.o. Evans and Searles, Gallavotti and Cohen,
Kurchan, Lebowitz and Spohn, and Harris and Schütz will be reconsidered. Our
treatment will be fully quantum-statistical, being an extension of our previous
research reported in Phys. Rev. E, 2012. While a true explosion of papers took
place after the initial articles at the turn of the century, virtually all of these
suffered from one or more of the following deficiencies: (i). The arguments are
based on classical trajectories in phase space; this is true for Christopher Jarzyn-
ski’s original work, as well as for Crooks’ paper; better fares Tasaki’s quantum
paper in the arXiv. (ii). Many quantum treatments involve the ‘pure’ von Neu-
mann equation or ‘non-reduced’ Heisenberg operators. This is regrettable par-
ticularly for an otherwise beautiful derivation in the complex plane by Talkner
and Hänggi; correlation functions for non-reduced Heisenberg operators do not
converge. As we pointed out in many papers and in our recent book: Kubo Lin-
ear Response Theory (LRT) is a hollow shell until proper randomization (Kubo:
‘stochasticization’) is introduced and carried out. Hence, the interactions λς
with the reservoir or internal causes must explicitly be considered. Taking the
trace over these, the resulting semigroup has complete positivity, exhibits non-
unitarity for the time evolution, dissipation and irreversibility, the general result
being the Lindblad quantum master equation (QME). In the physical literature
a more explicit result is obtained after application of the ‘weak coupling–long
time’ limit, developed long ago by Leon Van Hove. In our cited paper these
results have been extended to non-stationary processes, the result being concor-
dant with work by Gaspard. (iii). Whereas a few dozen papers use a stochastic
approach with some Master Equation as leitmotiv, this author found most treat-
ments wanting and not in accord with the general tenets spelled out by Lindblad
and others, e.g. Breuer and Petruccione. In particular, a stochastic treatment
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with ‘jump-induced’ random trajectories as by Harris and Schütz is begging
the question. While a number of their relationships will still be employed, our
Markov probability P (σf , tf |σ0, t0) shall only denote the two state-points, with
no reference whatsoever to stochastic trajectories, these being meaningless in a
quantum description. A straightforward reasoning gives the desired results.

PACS codes: 05.30.-d, 02.50.Ga, 05.70.Ln

1 Introduction

1.1 General considerations

Thermodynamic systems, driven far from equilibrium by some protocol ξ(t),
operating over a time interval t0 → t′, have dominated the literature on nonequi-
librium statistical mechanics since the early nineteen-nineties. While thermody-
namic inequalities for such processes have been known since the days of Clau-
sius, the new endeavour aimed at obtaining precise results, denoted as Fluctu-
ation Theorems (FT), which compare the probabilities for certain ‘action inte-
grals’, like work, entropy production, etc., for normal (or forward) processes
versus the probability in reverse (or backward) processes — not forbidden by
the second law of thermodynamics, but subject to the requirement that the final
state for the process satisfy the historic inequalities referred to above, provid-
ing measurements are made after re-equilibration of the system. Generally, both
closed (or isolated) and open (usually thermostatted or isothermal) systems have
been considered.

Our ideas in this article have been largely shaped by our extensive earlier work
on Linear Response Theory (LRT) [1-3,4]. To obtain the Kubo–Green relations,
it is essential that a general canonical ensemble be employed, such as the canoni-
cal, grand-canonical or pressure ensemble; the associated state functions are the
Helmholtz free energy F , the grand potential Ω and the Gibbs free energy G,
respectively. A special class of FT’s pertains to isothermal driven systems that
can instantly dispense heat to the thermal bath; the transfer process is succinctly
described in two early papers by Crooks [5,6]. For such a bath, the entropy
change is the ‘dissipative work’, T∆S = w −∆F 0 ≡ wdiss, (as is found from
the first and second Law when ∆Q = 0), where the superscript zero refers to
the equilibrium state function. Let now p(w) denotes the probability that work
w is performed in the forward process and p̃(−w) — the probability that work
–w is delivered in the reverse or backward process; the Crooks–Tasaki FT [5,7]
then reads

p(w)/p̃(−w) = exp(βwdiss) , (1.1)

where β−1 = kBT
r, kB being Boltzmann’s constant and T r — the reservoir

temperature. If other reservoirs are present, we need to redefine the dissipative
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work. If the volume is variable as in the pressure ensemble we have T∆S = w−
∆G0 ≡ wdiss, while for a grand-canonical ensemble T∆S = w−∆Ω0 ≡ wdiss.
With these extensions, Eq. (1.1) contains three forms of expended work FT’s.

It is well-known that FT’s like (1.1) have an associated work–(free) energy (W-
E) relationship, obtained by slight rewriting of (1.1); for the case that the only
reservoir is the thermal bath, the form p(w) exp(−βw) = p̃(−w) exp(−β∆F 0)
is integrated over all w; we note that from a stochastic viewpoint this is a two-
point integration. In either case, the result is the W–E relationship

〈e−βw〉 = e−β∆F 0

, (1.2)

first obtained by Christopher Jarzynski [8], actually prior to the Crooks–Tasaki
FT. Since by Jensen’s inequality, e〈x〉 ≤ 〈ex〉, a posteriori this confirms Clausius
result for isothermal open systems, 〈w〉 ≥ ∆F 0. We shall not reference here the
dozens of derivations that have been given in the literature in the decade after
the above results were first published (1997/98 – 2008), both by the authors
themselves and by scores of others, except for a really elegant derivation by
Talkner and Hänggi in 2007 [9], on which we comment later (Section 2.1). Many
references can be found in our own article on time-reversal symmetry in Phys.
Rev. E of 2012 [10].

Usually little is said about the nature of the driving protocol ξ(t). Since our
purpose is to provide a quantum description for FT’s and ensuing W–E rela-
tionships, we should not be guided by thermodynamics, but consider the mi-
croscopic formulation of LRT. Kubo theory commences by adding an external
‘response Hamiltonian’, AF (t), in the von Neumann equation; here A is a sys-
tem operator and F (t) is a generalized external field, composed of c-numbers. A
microscopic treatment is only possible if the protocol is associated with the ex-
ternal field, i.e. ξ(t) ⇒ F (t). Since the processes envisaged are nonstationary,
the response Hamiltonian is now A(t)F (t); the solution of the new Kubo-type
von Neumann equation is easily obtained.1 If, on the other hand, the protocol
involves variation of the system operator A (or a set of operators Ai), which
generally do not commute with the Hamiltonian H of the system, we must re-
sort to coarse-graining of the eigenstates of the pertinent variables in ‘a-space’,
as discussed by van Kampen [11] and resulting in a mesoscopic treatment. This
was considered in detail in a previous paper; see Van Vliet [12].

As a first example, already mentioned by Crooks [6], let us consider an Ising
spin lattice that is being magnetized (forward process) or demagnetized (back-
ward process) by a field H(t), the response Hamiltonian being

∑
i µ̂i(t)H(t) ∝∑

i σ̂i(t)H(t), where the {σ̂i} are the spin operators ‖ H . The process is dis-
crete and composed of successive individual spin-flips. The environment is held

1While we could pursue a new Kubo solution with generalized Heisenberg operators, there is no
real need for it since these Heisenberg operators behave similarly in the dual space as the density
operator in the direct Hilbert space. So, the results for the reduced correlation functions will be the
same as obtained from the new nonstationary Master equation.
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at a constant temperature T r. For the work FT and the Jarzynski relationship to
be applicable for this microscopic system, the spin relaxation time must be near
zero in order that heat is instantly exchanged. This is a tall order that can only
be met in computer simulations. If any finite relaxation occurs, spin-flips will
overlap and a range of spins must be bundled to form mesoscopic state-variables
{σκ} as we will see more clearly when dealing with the entropy FT’s in Sec-
tion 3.2; (the entropy flow, as defined there, is zero only for the single spin-flip
microscopic case).

In another example, found in both of Crooks papers [5,6] as well as in a later
article by Cohen and Imry [13], a gas is compressed or decompressed by a piston
in a cylinder with a diathermal wall and embedded in a heat bath. The driving
force is obviously related to the pressure which, in turn, depends on the clas-
sical virial [14]. To simplify the discussion, let the gas that is compressed be
an ideal gas. Because of its confinement, the gas is essentially one-dimensional
and its external virial is

∑
i xi(∂H/∂xi), where the {xi} denote the positions of

the molecules in the direction of the displacement. For the derivative it suffices
to mark the position of one selected molecule, labelling its position ξ, where
ξ(t) monitors the position of the piston. This suggests that the response Hamil-
tonian should be given by

∑
i xi(t)∂H[ξ(t)]/∂ξ. Elementary models can be

constructed so that the derivative ∂H/∂ξ is not entirely singular (cf. [13] Sec-
tion V). However, we now deal with a variation of an operator that does not com-
mute with the Hamiltonian. Thus, contrary to the presumptions in [13], there is
no microscopic quantum description for this classical textbook case; the eigen-
states {aI} pertain to the coarse-grained operators involved and the behaviour is
governed by the mesoscopic Master equation in a-space, with the FT’s and W–E
relationships as found in Ref. [12] and further discussed in Section 2.2.

We now briefly review the various entropy production FT’s. These were actually
formulated prior to the expended work FT’s discussed above. The first article on
the subject stems from Evans, Cohen and Morriss [15], dealing with violations
of the Second Law for the shear stress in fluids driven far from equilibrium. The
results were re-examined in a more general way by many researchers, among
others Evans and Searles [16], Gallavotti and Cohen [17,18], Kurchan [19,20],
Lebowitz and Spohn, [21], Maes [22], Harris and Schütz [23], and Seifert [24].
Anyone studying these developments — the articles, [20] excepted, are listed
in historical order — notices that, whereas all studies deal with classical phase
space trajectories, the first papers, Refs. [15-18], assume certain chaoticity rules
for the trajectories to be obeyed, while Refs. [19-23] deal with ordinary stochas-
tic paths employing a Langevin, Kramers, or Master equation approach. Since
in this paper we envision to obtain the quantum entropy FT’s, we expected to
find a classical principle that would emerge in the correspondence limit. Indeed,
Maes wrote a (quite abstract) article on entropy FT’s as a Gibbs’ property, in-
troducing his “Gibbs Measure”. While he defends the possibility of using the
chaotic hypothesis: “a reversible many-particle system in a stationary state can
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be regarded as a transitive Anosov system for the purpose of computing the
macroscopic properties”, he leaves us the benefit of the doubt as to whether the
FT’s based on chaotic trajectories should necessarily apply to, or be identical
with, FT’s for entropy production associated with regular stochastic trajectories;
perhaps we glean an insight into his reasoning when in his concluding remarks
he recommends that studies be done for information-entropy FT’s.

It may be useful to outline the original derivation employing the rules for chaotic
systems, cf. [16]. In an equilibrium state the volume in phase space is a Poincaré
invariant. Ruelle [25] has shown that in a nonequilibrium steady state the vol-
ume contracts. Let us consider a trajectory that is cut in segments of duration
τ labelled by ‘i’. The track is a transformation ξ → ϕ(ξ), ξ ∈ ∆Ω, where
we assume that in some sense ∆Ω is a bounded manifold of dimension 2rN .
After a time τ the new manifold ∆Ω′ is a diffeomorphism of ∆Ω. Let λ±n be
the spectrum of Lyapunov exponents. The normalized invariant measure for a
multidimensional system is given by

µi(τ) =
Λ−1
i∑
i Λ−1

i

=
exp[−∑n λ

+
n,iτ ]

∑
i exp[−∑n λ

+
n,iτ ]

, (1.3)

where Λi is the product of all expanding eigenvalues of the stability matrix asso-
ciated with the Hessian and {λ+

n,i} the set of positive local Lyapunov exponents
on segment ‘i’. Let now µ̃i(τ) be the measure for a time-reversed path. Since
the Hamiltonian is even in the momenta (providing the magnetic field is reversed
upon time reversal), we have the time-reversal property λ̃±n,i = λ∓n,i. Hence, we
have

µ̃i(−τ)

µi(τ)
=

exp[
∑
n λ̃

+
n,iτ ]

exp[−∑n λ
+
n,iτ ]

=
exp[

∑
n λ
−
n,iτ ]

exp[−∑n λ
+
n,iτ ]

= exp[
∑

n
(λ+
n,i + λ−n,i)τ ] = exp(−rN〈α〉iτ) . (1.4)

The last equality is based on the pairing property for Lyapunov exponents
discussed by Gallavotti and Cohen. Note that the sum is zero in a volume-
preserving equilibrium system; thus, for a far from equilibrium volume-
contracting system, 〈α〉 is a measure for the entropy production rate, which later
(Section 3.2) will be denoted by η̂. If ∆S (in units kB) denotes the microscopic
entropy change associated with the paths segments of duration |τ |, then (1.4)
leads to the FT:

p̃τ (−∆S)/pτ (∆S) = e−η̂τ . (1.5)

Let now at some point in time the system reach a steady state, from whereon
p̃ = p and ∆S = η̂τ . This leads to the asymptotic statement pτ (−η̂) =
pτ (η̂)e−ητ ∼ 0: second law violating intervals vanish exponentially with time
and for macroscopic time die out, cf. Evans and Searles [16]. Or, stated differ-
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ently,

lim
τ→∞

(
−1

τ
ln

[
pτ (−η̂)

pτ (η̂)

])
= η̂ , (1.6)

which is the form implied in most treatments, cf. Kurchan [19] and Lebowitz
and Spohn [21].

1.2 Deficiencies of previous work

(i) All of the above cited papers — with the exception of Tasaki [7], Talkner
and Hänggi [9], Cohen and Imry [13] and Kurchan [20] — are explicitly based
on a classical phase space description, which apparently enjoyed a (possibly
undeserved) rejuvenation around the turn of the century, both in the physical
and mathematical literature. While quantum mechanics can be formulated in
phase space using the Wigner distribution [26,27], this distribution is not positive
definite, unless integrated over a volume hrN ; this permits at most the concept
of “fuzzy” trajectories.

(ii) The quantum treatments in the ‘excepted’ articles listed above are based
on the ‘pure’ von Neumann equation or the ‘non-reduced’ Heisenberg oper-
ators whose solutions do not converge. Let us assume that local derivatives
[∂ρ/∂t, ∂AH/∂t] are zero; here ρ is the density operator and AH is a Heisen-
berg operator. The Hamiltonian is time-dependent, giving rise to the evolution
operator

U(tf , t0) = T exp

[
−(i/})

∫ tf

t0

H(ϑ)dϑ

]
, (1.7)

where T is the time-ordering operator. Generally, the time dependence of
H[ξ(t)] is parametrized by introducing a set of time points ti (i = 0, 1, . . . , n)
with tn = tf ; on an interval (tk ≤ t < tk+1) the Hamiltonian is assumed to be
constant and is denoted byHξk ; cf. Figure 1. The evolution operator then reads:

U(tf , t0) = T exp[−(i/})
∑n−1

i=0
Hξi(ti+1 − ti)]

=

n−1∏

i=0

exp[−(i/})Hξi(ti+1 − ti)] =

n−1∏

i=0

Uξi(ti+1, ti) . (1.8)

The solutions of the ‘pure’ von Neumann equation and of the ‘non-reduced’
Heisenberg equation of motion can now be written in terms of products of sta-
tionary evolution operators; or more succinctly by employing the Liouville su-
peroperator in the Liouville space S⊗ S̃:

exp(−iLξt) = {exp[−(i/})Hξt]→ ← exp[(i/})Hξt]} . (1.9)

We thus have

ρ(t)
AH(t)

}
= {

n−1∏

i=0

exp(∓i(ti+1 − ti)Lξi}
{
ρ(t0)
AH(t0)

. (1.10)
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This is nothing than a rotation in the Liouville space with divergent resolvent,
cf. Fano [28].

(iii) Dissipation must be accounted for by considering interactions, H = H0 +
λV , to all orders of perturbation. This yields Lindblad’s quantum master equa-
tion (QME) [29,30] and a similar result for the reduced Heisenberg equation; cf.
also Breuer and Petruccione [31]). Confining ourselves to stationary evolution,
the result for the density operator is ρ(t) = exp(tLr†)ρ(t0), with

Lr†(ρ) =
∑

i
{− 1

2 [V †i Vi, ρ]+ + ViρV
†
i } − (i/})[H1, ρ] , (1.11)

where [, ]+ denotes the anticommutator and where the {Vi} are operators in S.
The HamiltonianH1 is a dressed form ofH0 and reduces to it when the interac-
tions are weak. In Ref. [10] we computed the weak coupling, long time limit for
the von Neumann equation, arriving at the Pauli–Van Hove ME (cf. [32]), the
result being concordant with the general Lindblad QME. The reduced results for
(1.10), leaving out the segmentation of the interval, are summarised by:

lim
λ,t

e±itL = e−t(Λd∓iL
0) , (1.12)

whereL0K = (1/})[H0,K] is the zero-order Liouville operator associated with
H0; note that this is just the last term in the Lindblad QME (1.11). The dissi-
pation stems, however, fully from the real positive semi-definite master operator
Λd in diagonal Liouville space [1, Section 8.1], to wit:

ΛdK =
∑

γ
|γ〉〈γ|Mγ [〈γ|K|γ|〉] , (1.13)

where Mγ is the ordinary master operator in function space,

Mγ [f(γ)] = −
∑

γ̄
{W (γ|γ̄) f(γ̄)−W (γ̄|γ) f(γ)} . (1.14)
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where [ , ]+ denotes the anticommutator and where the {Vi} are operators in
S. The Hamiltonian H1 is a dressed form of H0 and reduces to it when the
interactions are weak. In Ref. [10] we computed the weak coupling, long time
limit for the von Neumann equation, arriving at the Pauli–Van Hove ME (cf.
[32]), the result being concordant with the general Lindblad QME. The reduced
results for (1.10), leaving out the segmentation of the interval, are summarized
by:

lim
λ,t

e±itL = e−t(Λd∓iL
0) , (1.12)

whereL0K = (1/})[H0,K] is the zero-order Liouville operator associated with
H0; note that this is just the last term in the Lindblad QME (1.11). The dissi-
pation stems, however, fully from the real positive semi-definite master operator
Λd in diagonal Liouville space [1, Section 8.1], to wit:

ΛdK =
∑

γ
|γ〉〈γ|Mγ [〈γ|K|γ|〉] , (1.13)

where Mγ is the ordinary master operator in function space,

Mγ [f(γ)] = −
∑

γ̄
{W (γ|γ̄)f(γ̄)−W (γ̄|γ), f(γ)} . (1.14)
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Here the {|γ〉} are the eigenstates ofH0 and the W ’s are the transition rates; by
Fermi’s golden rule

W (γ̄|γ) = (2πλ2/})|〈γ|V|γ̄〉|2δ(Eγ − Eγ̄) = W (γ|γ̄) . (1.15)

In this article the segmentation method will not explicitly be called upon except
in Subsection 3.2; rather, for the nonstationary case a time-dependent master
superoperator Λd(t) will be employed.

2 Quantum Fluctuation Theorems for Expended Work and
Work–Energy Relationships

2.1 Results from the microscopic ME for systems that admit a micro-
scopic treatment

The previous section showed clearly that all FT’s depend on a joint considera-
tion of forward and reverse processes. In a theory without perturbations time
reversal symmetry follows directly from the evolution operator. Denoting the
eigenstates (ES) of H0

i by {|γi〉}, the diagonal part of the density operator
p(γi, t) = 〈γi|ρ(t)|γi〉 for t > t′ is found from

p(γ, t) = 〈γ|U(t, t′)ρ(t′)U†(t, t′)|γ〉
=
∑

γ′γ′′

〈γ|U(t, t′)|γ′〉〈γ′|ρ(t′)|γ′′〉〈γ′′|U†(t, t′)|γ〉 , (2.1)

where U is given by (1.7) and we inserted the decomposition of unity
Σγ |γ〉〈γ| = 1. With an initial random phase assumption 〈γ′|ρ(t′)|γ′′〉 =
p(γ′, t′)δγ′γ′′ , we obtain

p(γ, t) =
∑

γ
|〈γ|U(t, t′)|γ′〉|2p(γ′, t′) . (2.2)

From Bayes’ rule we note that this implies a nonstationary conditional probabil-
ity P ,

Pns(γ, t|γ′, t′) = |〈γ|U(t, t′)|γ′〉|2 . (2.3)

Now,

〈γ|U(t, t′)|γ′〉∗ = 〈γ′|U†(t, t′)|γ〉 = 〈γ′|Ũ(t′, t)|γ〉 ,
〈γ|U(t, t′)|γ′〉 = [〈γ′|U†(t, t′)|γ〉]∗ = [〈γ′|Ũ(t′, t)|γ〉]∗ ,

(2.4)

where Ũ(t′, t) is the evolution operator for the backward process with inverse
time ordering. Thus multiplying the two statements, we obtain

Pns(γ, t|γ′, t′) = P̃ns(γ
′, t′|γ, t) . (2.5)
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Equation (2.5) expresses the time-reversal symmetry. [Not that all processes
possess this symmetry; cf. Wang and Feldman [33].]

This has, however, been a rather futile exercise; we need perturbations of
‘the motion proper’, just as Boltzmann considered collisions that perturbed the
streaming motion due to ponderomotive gradients and fields. In order to find the
reduced density operator or the reduced Heisenberg operators, the full perturba-
tion procedure was carried out in our article [10] and many other places. For the
reduced evolution operator, cf. Eq. (1.12), we established there with much effort

〈γ|UR(t, t′)|γ′〉∗ = 〈γ′|ŨR(t′, t)|γ〉 . (2.6)

Multiplying both sides with their complex conjugates, we once more find

PRns (γ, t|γ′, t′) = P̃Rns (γ′, t′|γ, t) . (2.7)

Now let us change the interval notation with (t′, t) ⇒ (t0, tf ). We multiply
the left-hand side with pcan(γ0, t0) and the right-hand side with pcan(γf , tf ) to
obtain,

Pns(γf , tf |γ0, t0)pcan(γ0, t0)

= P̃ns(γ0, t0|γf , tf )pcan(γf , tf )[pcan(γ0, t0)/pcan(γf , tf )] , (2.8)

whereby it is understood that the ES |γf 〉 and |γ0〉 belong to different Hamiltoni-
ans. With pcan given by the Gibbs distribution, (1/Z)e−βεγ , we have by Bayes’
rule [34]

W2(γf , tf ; γ0, t0)e−β(εγf−εγ0 ) = W̃2(γ0, t0; γf , tf )e−β (F 0
f−F 0

0 ) ; (2.9)

hereW2 is the two-point probability distribution and F 0 denotes the equilibrium
Helmholtz free energy of the system. Or also, with ∆F 0 = F 0

f − F 0
0 ,

W2(γf , tf ; γ0, t0)e−β(εγf−εγ0 ) = W̃2(γ0, t0; γf , tf )e−β∆F 0

. (2.10)

From this the Crooks–Tasaki FT will be obtained below.

The operator for work

We now come to the notion of work in quantum mechanics; many essays having
been written on this concept. Allahverdyan and Nieuwenhuizen associated the
work operator with the Heisenberg Hamiltonian difference [35]

HH(tf )−HH(t0) =

∫ tf

t0

(∂HH(s)/∂s)ds =

∫ tf

t0

(∂HH(s)/∂s)ṡdt , (2.11)

where we note that dHH/dt = ∂HH/∂t because of the Heisenberg equation
of motion and HH(t0) = H(t0). This operator is, however, subject to strong
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fluctuations [36]. Consequently, various authors, among whom Talkner et al.
[37] concluded that “work is not an observable”. We beg to differ, noting that
an operator for work, denoted by Ω does exist, but is not in the Hilbert space S0

of H0. However, as noted by Johann von Neumann [38], one can construct a
unitary operator in S0 that by Stone’s theorem has a spectral resolution [39,40]

eiuW =

∫
eiuwdp̂(w) , (2.12)

where {w} are the EV and dp̂(w) are the incremental projectors. Let ρ be the
appropriate density operator, then (2.12) yields the characteristic function2

X(u) ≡ 〈eiuW〉 = Tr
(
ρ

∫
eiuw|w〉〈w|dw

)

=

∫
eiuw〈w|ρ|w〉dw =

∫
eiuwp(w)dw , (2.13)

here p(w) is the probability density function, which may be singular. Contrary to
our incorrect story in [10], we shall now use the reduced Heisenberg operators,
writing [NB. ′X′ is cap. chi],

X(u) = 〈T {eiu[HRH(tf )−HRH(t0)]}〉 = 〈T {eiuHRH(tf )e−iuH(t0)}〉 , (2.14)

where non-subscripted operators are Schrödinger operators.

From the Heisenberg picture to the Schrödinger picture

Let us now consider the nonstationary Heisenberg correlation function for any
two operators ARH(tf ) and B(t0), which may belong to different Hilbert spaces,
S[H0

f ] and S[H0
0]. It will be expedient to consider averages in the tensor product

space S[H0
f ]⊗ S[H0

0] with ES {|γfγ0〉}; so,

ΦAB(tf , t0) = 1
2 Tr {ρf,0[ARH(tf ),B(t0)]+}

= 1
2 Tr {ρf,0[ARHd(tf ),Bd(t0)]+}

= Tr {ρf,0[ARHd(tf )Bd(t0)] . (2.15)

Here, [.., ..]+ denotes the anticommutator; the operators have been split into a
diagonal and non-diagonal part, whereby only the diagonal part contributes to
dissipation as noted before — whence the final right-hand side. Next, we need
the ME in Liouville space, derived in [10, Eq. (3.15)] for the stationary case.
Since in [10] the nonstationary case was handled via the segmentation procedure,

2Justification needs the standard mathematical notation for the scalar product and the projectors;
the rhs then yields the Lebesgue–Stieltjes integral

∫
exp(iuw)dP (w), where P (w) is the cumula-

tive distribution function (cdf).
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the final solution for the nonstationary density operator is readily written down,
cf. the result [10, Eq. (3.22)],3

ρns(tf ) =

{
T exp

[
−
∫ tf

t0

dϑΛd(ϑ)

]}
ρns(ϑ) . (2.16)

We now turn to the Heisenberg operator correlation form (2.15). We saw pre-
viously that the diagonal parts of the reduced operators have the same time be-
haviour as the density operator, cf. Eq. (1.12). Hence, we have

ΦAB(tf , t0) = Tr
{
ρT exp

[
−
∫ tf

t0

dϑΛd(ϑ)

]
Ad(ϑ)Bd(t0)

}
. (2.17)

In the Heisenberg picture ρ is constant, equal to ρcan if the system is thermostat-
ted. Formally we work in the tensor product space but in practise this gives no
complications, since for the matrix elements in the representation {|γfγ0〉} we
have (see also, [10 Section IIA2]),

〈γ0γf |ARHd(ϑ)|γfγ0〉 = 〈γf |ARHd(ϑ)|γf 〉 ,
〈γ0γf |Bd(t0)|γfγ0〉 = 〈γ0|Bd(t0)|γ0 〉 ,

(2.18)

since Ad and Bd belong to the different state spaces, S[Hf ] and S[H0], respec-
tively. Hence we get, mindful of the decomposition (1.13) of the operator Λd,4

ΦAB(tf , t0)

=
∑

γγ0

p(γ0)

{
T exp

[
−
∫ tf

t0

dϑMγ(ϑ)

]}
〈γ|Ad(ϑ)|γ〉 〈γ0|Bd(t0)|γ0〉 .

(2.19)

This will be evaluated by a Green’s function procedure. For a less cumbersome
treatment, we shall at first work in an interval (t′ → t). Thus, let us more closely
look at

〈γ|ARHd(t)|γ〉 =

{
T exp

[
−
∫ t

t′
dϑMγ(ϑ)

]}
〈γ|Ad(ϑ)|γ〉 . (2.20)

A more expedient expression is obtained by differentiating the above, resulting
in

∂

∂t
〈γ|ARHd(t)|γ〉+Mγ(t)〈γ|ARHd(t)|γ〉 = δ(t+)〈γ|Ad(t′)|γ〉 . (2.21)

3In Ref. [10] the final closed form was never written down but clearly implied, for in the end
the segmentation in n stretches should be subject to n → ∞ leading to (2.16), a form akin to the
original evolution operator in Eq. (1.7).

4Note that exp[
∑
γ |γ〉〈γ|f(γ)] =

∑
γ |γ〉〈γ| exp[f(γ)], as is found by series expansion.
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[The right-hand side accounts for the initial condition at t = 0, as may be verified
by Laplace transformation.] Let now g(γ, t; γ′, t′) be the Green’s function for
the non-self-adjoint differential equation above; it satisfies

∂g(γ, t; γ′, t′)
∂t

+Mγ(t)g(γ, t; γ′, t′) = δ(t− t′)δ(γ − γ′) . (2.22)

The inhomogeneous equation (2.21) has the solution,5 absent boundary terms
from the bilinear concomitant, cf. Morse and Feshbach [41, Section 7.3]

〈γ|ARHd(t)|γ〉 =

∫ t+0

0

dt′δ(t′+)

∫

D(γ′)

∆γ′g(γ, t; γ′, t′)〈γ′|Ad(t′)|γ′〉

=

∫
∆γ′ g(γ, t; γ′, 0)〈γ′|Ad|γ′〉 . (2.23)

Presently, let us reconsider the ME for the nonstationary Markov probability
Pns(γ, t|γ′, t′),

∂Pns(γ, t|γ′, t′)
∂t

+Mγ(t)Pns(γ, t|γ′t′) = δ(t− t′)δ(γ − γ′) , (2.24)

where we included the initial conditions. Comparing with (2.22), we note the
similarity, but since the delta function is even, γ and γ′ could be reversed. In-
deed, in [1, Eqs. (7.5), (7.27)] we showed

Pns(γ, t|γ′, t′) = g(γ′, t; γ, t′) . (2.25)

Substituting (2.25) into (2.23) we obtained alternately,

〈γ|ARHd(t)|γ〉 =

∫
∆γ′Pns(γ

′, t|γ, 0)〈γ′|Ad|γ′〉 . (2.26)

This, then, yields

ΦAB(t, 0) =

∫∫
∆γ∆γ′Pns(γ

′, t|γ, 0)p(γ)〈γ′|Ad|γ′〉〈γ|Bd|γ〉

or, upon interchange of γ ↔ γ′:

ΦAB(t, 0) =

∫∫
∆γ∆γ′Pns(γ, t|γ′, 0)p(γ′)〈γ|Ad|γ〉〈γ′|Bd|γ′〉. (2.27)

Finally, going back to the original interval of interest, we established:

ΦAB(tf , t0) =

∫∫
∆γ0∆γfW2(γf , tf ; γ0, t0)〈γf |Ad|γf 〉〈γ0|Bd|γ0〉 .

(2.28)
5Since the EV γ are dense, one could work with probability density functions (pdf). However,

we prefer to work with distributions, so we shall incorporate the density of states Z(γ) in an interval
∆γ = Z(γ)dγ; thus

∑
γ→

∫
∆γ.
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This is the correlation function in the Schrödinger form — the operators are
constant while the time dependence is vested in Pns or W2.

This will now be applied to the characteristic function for the work given in
(2.14). One finds,

X(u) = 〈eiuHRH(tf )e−iuH
R
H(t0)〉

=

∫∫
∆γ0∆γfW2(γf , tf ; γ0, t0)〈γf |eiuH(tf )|γf 〉〈γ0|e−iuH(t0)|γ0〉

=

∫∫
∆γ0∆γfW2(γf , tf ; γ0, t0) eiuεγf e−iuεγ0

=

∫∫
∆γ0∆γfW2(γf , tf ; γ0, t0) eiu(εγf−εγ0 ) . (2.29)

We note again that the average entails a two-point process. Inversion of the char-
acteristic function gives the probability for the eigenvalues of the work operator,
i.e. that work w is performed,

p(w) =

∫∫
∆γ0∆γfW2(γf , tf ; γ0, t0)δ[w − (εγf − εγ0)] . (2.30)

Clearly, the work goes into the excitations of the system. Curiously, the above re-
sult is identical with that found in the paper by Talkner et alii [37, their Eq. (10)].
As with the time-reversal property, theories with no dissipation — as Kubo’s
original LRT — usually give the ‘right’ results except that entropy production
is nil. In this paper random aspects are incorporated ab initio. Going back to
Eq. (2.10), we multiply by the delta function of (2.30), to obtain,

W2(γf , tf ; γ0, t0)δ[w − (εγf − εγ0)]

= W̃2(γ0, t0; γf , tf )δ[−w − (εγ0 − εγf )] eβ(w−∆F 0) , (2.31)

where we used that the delta function is even. Integrating both sides and noting
(2.30) and its analogue for reversed time, we established

p(w)/p̃(−w) = eβ(w−∆F 0) , (2.32)

which is the quantum Crooks–Tasaki fluctuation theorem. Next, we notice that
for complex u, the domain of analyticity is 0 ≤ Imu ≤ β, cf. [20]. Thus, setting
u = iβ in (2.29) we find

〈e−βW〉 =

∫∫
∆γ∆γ′W2(γf , tf ; γ0, t0)e−βw , (2.33)

as expected. Lastly by rearranging (2.32) as p(w)e−βw = p̃(−w)e−β∆F 0),
integration over w yields the quantum Jarzynski W–E theorem

〈e−βW〉 = e−β∆F 0

. (2.34)
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Talkner–Hänggi relation for the characteristic function

By manipulation in the complex plane, Talkner and Hänggi [9] obtained a re-
lation linking the characteristic functions X(z) and X̃(z) of the forward and
backward processes, respectively, with X(z) = 〈exp(izW〉> and X̃(z) =
〈exp(izW〉<. Employing non-reduced Heisenberg operators and the unitary
evolution operator as in Eq. (1.7), they established

Z(γ0)X(u) = Z(γf )X̃(−u+ iβ) , (2.35)

where the Z’s are the partition functions at the beginning and end of the pro-
cess; thus Z(γ0) =

∑
γ0
e−βεγ0 = e−βF

0
0 and similarly for Z(γf ). The rela-

tion (2.35) provides an alternate route to obtain the Crooks–Tasaki FT and the
Jarzynski W-E relationship, see below.

We now show that the relation (2.35) can easily be obtained in a theory with
dissipation, employing the Schrödinger forms. Starting with (2.28), we split W2

in a conditional probability and the canonical distribution. Hence we have

Z(γ0)X(u) =

∫∫
∆γ0∆γfPns(γf , tf |γ0, t0)e−βεγ0 eiuεγf e−iuεγ0

=

∫∫
∆γ0∆γfPns(γf , tf |γ0, t0)e−i(u−iβ)εγ0 eiuεγf

=

∫∫
∆γ0∆γf P̃ns(γ0, t0|γf , tf )e−βεγf ei(u−iβ)εγf e−i(u−iβ)εγ0

=

∫∫
∆γ0∆γf P̃ns(γ0, t0|γf , tf )e−βεγf ei(−u+iβ)(εγ0−εγf )

= Z(γf )X̃(−u+ iβ) . (2.36)

The Fourier inversion of the left-hand side is Z(γ0)p(w), while for the right-
hand side we need:

1

2π

∫ ∞

−∞
du e−iuw

∫ ∞

−∞
dw′e−iw

′(u−iβ)p̃(w′)

=
1

2π

∫ ∞

−∞
dw′p̃(w′)

∫ ∞

−∞
du e−iu(w+w′)e−βw

′

=

∫ ∞

−∞
dw′p̃(w′)δ(w + w′)e−βw

′
= eβwp̃(−w) . (2.37)

So we once more established the Crooks–Tasaki FT,

p(w)/p̃(−w) = [Z(γf )/Z(γ0)]eβw = eβ(w−∆F 0) , (2.38)

Discussion. In most of the standard literature all kinds of assumptions are made
regarding the coupling to the reservoir. Most authors assume that at t0 the sys-
tem is coupled to the bath, after which it continues, being left isolated. Then
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at tf it is somehow reconnected ‘without performing work’, cf. [9,42]. In a
true quantum treatment, whatever happens in the interval between the two time-
points is irrelevant, or even inaccessible! Note that the derivation in (2.36) is
a purely mathematical exercise. This is in a sense similar to the quantum scat-
tering problem. While in classical Rutherford scattering an α-particle follows
a hyperbolic path, in a quantum version the particle simply makes a transition
m → n, or — a particle with state |m〉 is annihilated and a particle with state
|n〉 is created. Nothing else needs to be said. We should take quantum theory at
face value!

2.2 Results based on the mesoscopic Master Equation for operators in
a-space with coarse-grained states

When observables other than fields are varied generally, these observables do not
commute with each other or with the Hamiltonian and a mesoscopic description
is necessitated. Examples are shearing in an isothermal fluid or compression
of a gas, as mentioned already in the introduction. Van Kampen [11] has out-
lined a procedure to coarse-grain such operators so that they quasi-commute by
expressing them in the eigenstates {|η〉} of the Hamiltonian setting,

ak =
∑

η,η′

|η〉〈η|ak|η′〉 . (2.39)

Next, the states are grouped into energy cells |η〉 ∈ ∆Eκ and the matrix elements
between different energy cells are erased, so that

ak,cg =
∑

κ

∑

η,η′∈∆Eκ

|η〉〈η|ak|η′〉 . (2.40)

For each ai a unitary transformation is made to diagonalize the matrix elements
in each cell, hence

ai,cg =
∑

κ

∑

η̄i∈∆Eκ

|η̄i〉〈η̄i|ai|η̄i〉 . (2.41)

Since the new sets of projectors all commute with each other and the Hamilto-
nian, the {ai,cg} have the mesoscopic eigenstates {|ακ〉}; the subscripts ‘cg’ on
the {ai} will henceforth be omitted.

A mesoscopic ME can be derived, but is not needed here. However, we shall use
the mesoscopic conditional probability

P (af , tf |a0, t0) = P (γf |tf |γ0, t0)χ(af ) , (2.42)

is the density of states; the symbol a represents all the relevant variables that are
being varied. We noted hereby that a given initial state γ0 engenders a specific

235



Carolyne M. Van Vliet

initial a0, but the converse is not true. The mesoscopic conditional probability
densities for forward and backward driving processes are therefore related by

P (af , tf |a0, t0) = P̃ (a0, t0|af , tf )[χ(af )/χ(a0)] . (2.43)

We now need the initial distributions for both sides. They are not simply the
canonical distributions of the previous section, since the a’s are subject to ad-
ditional fluctuations. In Ref. [12] we showed that here we need the canonical
Boltzmann–Einstein probability density functions

W (a0, t0) = ĉ−1
0 e−β[F (a0)−F 0

0 ] ,

W (af , t1) = ĉ−1
f e−β[F (af )−F 0

f ] ,
(2.44)

where the non-superscripted F ’s are nonequilibrium free energy functions, while
the ĉ’s are normalization constants that vanish logarithmically.6 Multiplying
(2.41) with the W ’s of (2.42), simple algebra yields

W2(af , tf ; a0, t0)[χ(a0)δ(a0)/χ(af )δ(af )]eβ[F (a0)−F (af )]

= W̃2(a0, t0; af , tf )e−β∆F 0

. (2.45)

Noting that χ(a)δa = ∆Γ(a) is the accessible number of quantum states, whose
logarithm is the nonequilibrium Gibbs entropy function, we finally obtain

W2(af , tf ; a0, t0)e−β[E(af )−E(a0)] = W̃2(a0, t0; a1, t1)e−β∆F 0

. (2.46)

As for the microscopic case, we must compute the pdf for work from the char-
acteristic function 〈eiuŴ〉, where basically Ŵ is still a course-grained operator
with eigenvalues W (in some cases it could be treated as a classical variable,
appealing to the correspondence limit). One obtains,

p(W) =

∫∫
dafda0W2(af , tf ; a0, t0) = δ (W − [E(af )− E(a0)]) , (2.47)

as is also intuitively clear; a similar expression applies for p̃(W). Multiply-
ing (2.46) with the delta expressions and substituting the probability density
functions for work, subsequent two-point integration yields the Crooks–Tasaki
fluctuation theorem

p(W)/p̃(−W) = exp[β(W −∆F 0) . (2.48)

Multiplying by p̃(−W) exp(−βW) and integrating over W yields the Jarzynski
relationship

〈exp(−βŴ)〉 = exp(−β∆F 0) . (2.49)

Other properties for mesoscopic processes are found in Ref. [12].
6The W (a) is given by the Boltzmann–Einstein principle: lnW (a) = −β[F (a)− F 0]. Upon

exponentiation we need a normalization constant, so that W (a)ĉ = exp{−β[F (a) − F 0(a0)]}.
Normalizing,

∫
W (a)da ≈ W (a0)δ(a) = 1, so that with a → a0 and exp{ } = 1, we find

ln ĉ ≈ ln δa = O(lnN).
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3 Quantum Fluctuation Theorems for Entropy-Change and for
Entropy Flow; Asymptotic Expressions

3.1 Isolated systems and microscopic considerations

It is well known that in any ensemble, microcanonical or general canonical, the
Gibbs entropy is given by S0

G = −kBTr ρ ln ρ. For nonequilibrium ensembles,
the Gibbs entropy function is generalized to be defined by

SG(t) = −kBTr ρ(t) ln ρ(t) . (3.1)

We note that SG(t) is a smoothly varying scalar function of time, contrary to the
Boltzmann entropy function. However, omitting the trace over ρ, we can define
a stochastic entropy operator

S(t) = −kB ln ρ(t) , (3.2)

which is a natural Schrödinger operator, in contrast with all other operators for
FT’s employed in this article. In the next section we shall likewise introduce an
operator for entropy flow I to the environment or reservoir. In an isolated system
the transition rates Wout = Win, so that I = 0, cf. footnote 7 in Subsection 3.2.
Under these circumstances we can employ a microscopic description, which un-
fortunately only applies to isolated systems. We are interested in the probability
for the eigenvalues {∆s} on the time interval of the forward protocol, which
in this section we take to be (t′ → t). This is most easily obtained from the
generating function,

Ψ(λ) ≡ 〈e−λ[S(t)−S(t′)]/kB 〉> = 〈eλ[ln ρ(t)−ln ρ(t′)]/kB 〉> . (3.3)

Now in the representation {|γ〉} we have for the eigenvalues {∆s}

e−λ∆s/kB = Tr
{
eλ[ln ρ(t)−ln ρ(t′)]/kB

}
= (p(γ, t)/p(γ′, t′))

λ
. (3.4)

Hence, doing the two-point averaging,

Ψ(λ) = 〈e−λ∆s/kB 〉>

=

∫∫
∆γ∆γ′ (p(γ, t)/p(γ′, t′))

λ〉Pns(γ, t|γ′, t′)p(γ′, t′) . (3.5)

Further, simple manipulation and time-reversal symmetry gives

Ψ(λ) =

∫∫
∆γ∆γ′ (p(γ′, t′)/p(γ, t))

−λ+1
P̃ns(γ

′, t′|γ, t)p(γ, t)

= 〈e−(1−λ)∆s/kB 〉< = Ψ̃(1− λ) . (3.6)
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It remains to invert the generating functions. The left-hand side gives p(∆s/kB).
For the right-hand side we have, using the inverse Laplace transform and setting
R ≡ ∆s/kB

c+i∞∫

c−i∞

dλeλR
∞∫

0

dR′p̃(R′)e−(1−λ)R′
=

∞∫

0

dR′e−R
′
p̃(R′)

i∞∫

−i∞

dλ eλ(R+R′)

=

∞∫

0

dR′e−R
′
p̃(R′)δ(R+R′) = eRp̃(−R) . (3.7)

We thus established the quantum “transient entropy FT”:

p(∆s) = e(∆s/kB)p̃(−∆s) . (3.8)

The word transient stems from the classical description in which the stochasticity
is attributed to the succession of jumps wσ,σ′(t) of the classical path.

Next, let us assume that the driven system has reached a steady state at some
time t∗, from whereon the protocol will be time-independent, so that p = p̃. We
then find the “steady-state entropy FT”:

p(−∆s) = e−(∆s/kB)p(∆s) . (3.9)

This relationship provides a quantitative answer to Loschmidt’s objections to
Boltzmann’s irreversible H-theorem: decreasing entropy can be observed but
with an exponentially low probability. An asymptotic form will be given later.
Curiously, the results (3.8) and (3.9) will also be found for thermostatted sys-
tems, but a far more elaborate computation awaits!

3.2 Quantum entropy theorems for thermostatted systems based on
the nonstationary mesoscopic master equation

For thermostatted systems we need the nonstationary ME for mesoscopic states,
since the system operators are randomized by the interactionsλVwith the reser-
voir. Reminiscent of the case of the spin lattice, with spin flips modeling the
interactions, the mesoscopic states will not be denoted by{|α〉} as in Section 2.2
but by {|σ〉} ,as is customary in the literature for entropy FT’s. The ME reads
[10], [43]:

∂p(σ, t)

∂t
=
∑

σ′ 6=σ
[wσ′,σ(t)p(σ′, t)− wσ,σ′(t)p(σ, t)] = −Mσ[p(σ, t)] , (3.10)

where Mσ is the function-space master operator; further, wσ′,σ(t) is the time-
dependent transition rate from σ to σ′; these rates are connected to the micro-
scopic rates by

wσ,σ′(t) = Wt(γ
′|γ)χ(σ′) , wσ′,σ(t) = Wt(γ|γ′)χ(σ) , (3.11)
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where χ is the density of states. Because of microscopic reversibility for the
W ’s, we have

wσ,σ′(t)/wσ′,σ(t) = χ(σ′)/χ(σ) . (3.12)

We proceed to find the nonequilibrium Gibbs entropy function from the master
equation. Computing SG in the representation {|σ〉}, we have

SG(t) = −kBTrρ(t) ln ρ(t) = −kB
∑

σ
p(σ, t) ln p(σ, t) . (3.13)

From the ME (3.10) we find,

∂SG[p(σ, t)]

∂t
=

1

2
kB
∑

σ,σ′

[p(σ, t)wσ,σ′(t)− p(σ′, t)wσ′,σ(t)] ln

[
p(σ, t)

p(σ′, t)

]

= kB
∑

σ,σ′

p(σ, t)wσ,σ′(t) ln

[
p(σ, t)

p(σ′, t)

]
. (3.14)

We now follow Schnakenberg [44] in splitting this into an entropy production
rate η and entropy current I as follows:

η[p(σ, t)] =
1

2
kB
∑

σ,σ′

[p(σ, t)wσ,σ′(t)− p(σ′, t)wσ′,σ(t)] ln

(
p(σ, t)wσ,σ′(t)

p(σ′, t)wσ′,σ(t)

)

= kB
∑

σ,σ′

p(σ, t)wσ,σ′(t) ln

(
p(σ, t)wσ,σ′(t)

p(σ′, t)wσ′,σ(t)

)
, (3.15)

Iη[p(σ, t)] = kB
∑

σ

p(σ, t)
∑

σ′

wσ,σ′(t) ln

(
wσ,σ′(t)

wσ′,σ(t)

)
. (3.16)

This gives the entropy conservation rule,

∂SG/∂t+ Iη = η ≥ 0 , (3.17)

by Klein’s lemma, cf. the right-hand side of the first line of (3.15).7

All these expressions are still averages, as implied by the sum
∑
σ p(σ, t)[...].

Omitting this sum, we have the corresponding fluctuating quantities being the
σ-representation of operators S, Î and η̂. We will also set Î = ∂∆Sflow/∂t, the
total entropy change being

Tr ρ[∆Stotal] = ∆ssyst + ∆sflow . (3.18)
7When I = 0, the χ’s of (3.11) are unity, so the system can be handled with the microscopic

states {|γ〉}.
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Computation for ∆sflow∆sflow∆sflow. Various authors have invented elaborate schemes to
obtain ∆sflow — like the “quantum Hamiltonian” method by Harris and Schütz
[23] in which projectors |σ〉〈σ| and ‘pseudo-projectors’ |σ〉〈σ′| are employed.
Here we shall give a direct computation with no artificial concepts. Like for the
work FT’s, it does not suffice to work with the ME for the scalar probabilities.
Rather, we need the operator form in the Liouville space associated with the
tensor product space S̄[Hcg(t)] ⊗ S̄[Hcg(t′)], where S̄[Hcg(t)] and S̄[Hcg(t′)]
are the Hilbert spaces for the coarse-grained Hamiltonians Hcg(t) and Hcg(t′),
respectively. We can then convert to a Schrödinger form, similarly as in our
previous developments.

Let Sflow(0) be the Schrödinger operator for the entropy flow at t′ = 0, the
beginning of the forward protocol and let SRH,flow(t) be the reduced Heisenberg
operator for the entropy flow at time t. Then for the generating function of the
eigenvalues ∆sflow we have in the indicated Liouville space

Ψ∆sflow(λ, t) =
〈
exp{−λ[SRH,flow(t)− Sflow(0)]}

〉

=
〈
exp[−λSRH,flow(t)] exp[λSflow(0)]

〉
. (3.19)

Writing SRH,flow in its projectors, we have

−λSRH,flow(t) =



−λT exp


−

∑
σσ′
|σσ′〉〈σ′σ|

t∫

0

dϑMσ(ϑ)





Sflow(t)

= −λ
∑

σσ′

|σσ′〉〈σ′σ|



T exp[−

t∫

0

dϑMσ(ϑ)]



Sflow(t) , (3.20)

where we used an extension of footnote 4. Now for the matrix elements of the
entropy flow operators we have as usual,

〈σ′σ|Sflow(t)|σσ′〉 = 〈σ|Sflow(t)|σ〉 , (3.21)
〈σ′σ|Sflow(0)|σσ′〉 = 〈σ′|Sflow(0)|σ′〉 . (3.22)

Taking the scalar product in (3.20) and substituting these results into the above,
we obtain

Ψ∆sflow(λ, t) =

〈
exp

{
− λT

[
exp

(
−
∫ t

0

dϑMσ(ϑ)

)]

× 〈σ|Sflow(t)|σ〉〈σ′| expλSflow(0)|σ′〉
}〉

. (3.23)

We should remember that the states {|σ′〉} at t = 0 and the states {|σ〉} at t be-
long to different Hamiltonians; more about that later in the discussion. Although
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Sflow(t) is not an observable in this state space, the generating function should
exist for most λ. Thus, Ψ∆sflow(λ, t) is a correlation function ΦAB(t, 0) such as
studied in Section 2, with

〈σ|ARHd(t)|σ〉 = exp

{
−λT exp

[∫ t

0

dϑMσ(ϑ)

]
〈σ|Sflow(t)|σ〉

}
, (3.24)

while
〈σ′|Bd(0)|σ′〉 = exp(−λ〈σ′|Sflow(0)|σ′〉 . (3.25)

For expediency we set 〈σ′|Sflow(0)|σ′〉 = 0. Multiplying and averaging – i.e.
summing over the two states relating to the two-point measurement,

∑
σ,σ′ −

from (2.27) we find the Schrödinger form; denoting the eigenvalue of Sflow(t)

by ∆sflow and with −λ∆sflow = −λ
∫ t

0
dϑIσ(ϑ), we obtain

Ψ∆sflow(λ, t) =

∑

σσ′

Pns(σ, t|σ′, 0)p(σ′)T exp

(
−λ
∫ t

0

dϑwσσ′(ϑ) ln

[
wσσ′(ϑ)

wσ′σ(ϑ)

])
. (3.26)

This is the main result. It looks intuitively ‘plausible’ and is by and large
quite similar to the corresponding expression in the long paper by Harris and
Schütz, yet is far less complex, cf. [23, Eq. (3.21)].8 However, no assump-
tions about jumps, giving rise to stochastic trajectories have been made any-
where. Rather, as for the work FT’s, we computed entropy flow as a reduced
Heisenberg correlation function and then, via differentiation implied, obtained a
tractable Schrödinger form.

Now the following manipulations are done to connect with the reverse generat-
ing function:

T exp

{
−λ
∫ t

0

dϑwσ,σ′(ϑ) ln (wσ,σ′(ϑ)/wσ′,σ(ϑ))

}

= T exp

{
(1− λ)

∫ t

0

dϑwσ′,σ(ϑ) ln (wσ,σ′(ϑ)/wσ′,σ(ϑ))

}

= T exp

{
−(1− λ)

∫ t

0

dϑwσ′,σ(ϑ) ln (wσ′,σ(ϑ)/wσ,σ′(ϑ))

}

= T exp

{
−(1− λ)

∫ t

0

dϑwσ′,σ(t− ϑ) ln (wσ′,σ(t− ϑ)/wσ,σ′(t− ϑ))

}
,

(3.27)

8With H̃Q being their ‘quantum Hamiltonian’, the generating function 〈e−λR〉 has the form
exp[−

∫
dϑH̃Q(λ, ϑ)] = − exp

(
−
∫
dϑwσ,σ′ (ϑ){exp[−λ ln(wσ,σ′/wσ′σ)]}

)
. The λ should

clearly be in the lower exponential to match the generating function. With that change the result
simplifies considerably and matches in form our result, Eq. (3.26).
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where in the last transition we used that
∫ t

0
dϑf(ϑ) =

∫ t
0
dϑf(t− ϑ). Put into

(3.26), we showed

〈
e−λ∆sflow

〉
>

=
〈
e−(1−λ)∆sflow

〉
<
. (3.28)

This is the same result as for the isolated system, cf. (3.6). Needless to say, that
Eq. (3.6) is also applicable to the system entropy of the thermostatted system,
providing we set λ ⇒ σ. Since the two entropies of (3.18) are additive, their
generating functions are multiplicative, except that we must avoid ‘double av-
eraging’. For the purist we can also write down the generating function for the
total entropy change immediately, by putting (3.4) inside (3.26) and summing
over p(σ′, 0)P :

〈
e−λ∆stotal

〉
>

=
∑

σσ′

[p(σ, t)]λT exp



−λ

t∫

0

dϑwσ,σ′(ϑ) ln

(
wσ,σ′(ϑ)

wσ′,σ(ϑ)

)


× [p(σ′, 0)]1−λPns(σ, t|σ′, 0) . (3.29)

The steps of (3.27) can be verbatim repeated, using in addition time-reversal
symmetry for Pns. Hence, again we arrive at

〈
e−λ∆stotal

〉
>

=
〈
e−(1−λ)∆stotal

〉
<
. (3.30)

The inversion of this result goes as in (3.7), giving the “transient entropy FT”,

p(∆stotal) = e(∆stotal/kB)p̃(−∆stotal) . (3.31)

If a steady state is reached at some point, then with p = p̃, we find the steady
state entropy FT, giving the probability that entropy decrease occurs,

p(−∆stotal) = e−(∆stotal/kB)p(∆stotal) . (3.32)

Asymptotically, ∆stotal ∼ ηt, where η is the entropy production rate as defined
in (3.15). The asymptotic FT now reads p(−η) ∼ e−ηtp(η); or also

lim
t→∞

(
−1

t
ln

[
p(−η)

p(η)

])
= η . (3.33)

Further discussion. The entropy flow current is based on the quantity wσσ′(t),
which we used cavalierly but we indicated along the way that σ and σ′ are ES of
different Hamiltonians and, surely, this rate could not represent a single transi-
tion! Even less could it be obtained from Fermi’s ‘golden rule’. Fortunately, the
final result led to a sum of time-ordered convolution integrals, Eq. (3.26). This
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alone indicates that multiple transitions are involved. More realistically, the re-
sult should have been obtained with the segmentation method. If the points
t1, t2, . . . , tn−1 are spaced close enough, integration means multiplication with
the interval ti+1 − ti; in that case we would have obtained

T exp

(
−λ
∫ t

0

dϑwσσ′(ϑ) ln

[
wσσ′(ϑ)

wσ′σ(ϑ)

])

= lim
n→∞

exp

(
−λ

n−1∑

i=0

wσiσi+1(ti+1 − ti) ln

[
wσiσi+1

(ti)

wσi+1σi(ti)

])
. (3.34)

Or, we can write this as a product of ”nearest neighbour” correlations,

T exp

(
−λ
∫ t

0

dϑwσσ′(ϑ) ln

[
wσσ′(ϑ)

wσ′σ(ϑ)

])

= lim
n→∞

n−1∏

i=0

exp

(
−λwσiσi+1(ti+1 − ti) ln

[
wσiσi+1(ti)

wσi+1σi(ti)

])
. (3.35)

[Actually, the number of transitions should remain finite and of the order of N ,
where N is obtained as the time interval of the protocol divided by the duration
of a microscopic transition.]

This is the result in terms of single transitions; the symbolic overall result is the
convolution integral at the left-hand sides.

4 Conclusions

In Section 1 we presented a brief survey of previous work and some of our
main objections. The oldest articles on FT’s, particularly the entropy fluctuation
theorem, were all of a classical nature. While the volume of an assembly of
phase points is a Poincaré invariant in an equilibrium state, in nonequilibrium
the volume generally contracts. The ratio of probabilities for entropy produc-
ing to entropy reducing processes can then be computed from the spectrum of
Lyapunov exponents, as by Evans and Searles, Evans, Cohen and Morriss, and
others quoted previously. While the theory of chaos, formulated mainly after the
nineteen-sixties, is extremely interesting as a branch of mathematics, it still is a
classical phase-space description, which in this authors’ view violates the very
tenets of quantum mechanics and quantum statistics. Surely, such approaches
can give the ‘right’ results, but for the wrong reasons; another example is af-
forded by Rutherford scattering of alpha-particles in the early twentieth century,
in which the assumed hyperbolae of classical mechanics are purely illusory.

More interesting are quantum approaches that use the von Neumann equation
or Heisenberg operators to describe such observables as work, or entropy-flow
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that require to be defined by generating functions or characteristic functions,
since the observable involved is not part of the Hilbert space of the leading
Hamiltonian H0. These theories may produce beautiful results, such as the
Talkner–Hänggi relationship for the characteristic function of work. Unfortu-
nately, ‘pure’ Heisenberg operators such as used in Kubo’s original LRT have
non-convergent correlation functions — e.g., the mixing theorem does not hold
for t → ∞ — and show no dissipative behaviour or entropy production, de-
spite yielding a formal fluctuation–dissipation theorem! Amended Kubo theory,
with convergent results has been the research area of the author and coworkers
since the mid-seventies, leading to ‘Reduced Heisenberg operators’ in which the
coupling λV with an external reservoir or internal causes has been carried out
to all orders of perturbation. The initial research is described in articles [1-3]
published in J. of Math Physics (1978ff).

Now let us move on to the present quest involving FT’s for driven systems with
time-dependent Hamiltonians, some forty years later. The time dependence is
generally thwarted by considering piece-wise Hamiltonians over short intervals
of the protocol; the ‘segmentation method’ is described at the end of our intro-
ductory Section 1. Yet in this article, contrary to our previous paper [10], it is
not explicitly used, an exception being in the discussion notes of 3.2.

Surprisingly, the only Schrödinger operator that presents itself naturally is
the Gibbs’ entropy. It is well known that in any ensemble we have SG =
−kBTr ρ ln ρ, where ρ is the density operator. The stochastic equivalent is the
operator S(t) = −kB ln ρ(t). Unfortunately, this form can only be used for an
isolated system in which there are no other entropies like entropy flow to the
reservoir.

In all other cases we deal with Heisenberg operators, as in Kubo’s LRT. They
are usually outside the state space under consideration, but, as pointed out by
von Neumann, their generating function or the characteristic function, Ψ(λ) or
X(u), respectively, exist within a wide domain of λ or u. For FT’s we need
the reduced operators’ diagonal parts, which are responsible for the dissipa-
tion. Generally this part goes as T exp[−

∫ t
0
dϑΛ(ϑ)], where Λ is positive def-

inite (allowing for convergence of correlation and response functions) and has
a spectral resolution in terms of projectors and the master equation in function-
space. Reduced Heisenberg operators are therefore by nature stochastic. Now
comes the “crux”: we must convert these operators and their correlation func-
tions to the Schrödinger form! This is accomplished by differentiation with
initial conditions, and then solving with a Green’s function procedure. This
was first shown by the author in Ref. [1, subsection 9.2 and previous]. In the
Schrödinger form, the operators are time-independent, the time dependence now
being vested in the conditional probability Pns(γ, t|γ′, 0) or in the two-point
probability W2(γf , tf ; γ0, t0). The main equations for this procedure are found
in (2.27) and (2.28). [There is also a version of this procedure in our book, [4,
subsection 16.14.1.].
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With the Schrödinger form we can now re-establish all results done previously
with non-convergent Kubo theory. In particular, the Crooks–Tasaki work FT’s
are rapidly established, as well as the Jarzynski W–E relationship. Likewise,
the Talkner–Hänggi relation for the symmetry properties of the characteristic
function tumbles out effortlessly. Finally, we used this approach to ascertain
the entropy-flow generating function and the subsequent symmetry properties
that result in the ‘total’ entropy fluctuation theorem, all being in accord with re-
sults found by others (except a small variation from the Harris–Schütz result as
published). All this is accomplished without assuming that there are ‘stochas-
tic trajectories’; in fact, what happens between initial and final measurement is
ontologically inaccessible.

Epilogue

This article was prepared as an invited contribution for the 11-13 July 2016
Solvay Workshop on “Nonequilibrium and nonlinear phenomena in statistical
mechanics” at the Université Libre de Bruxelles. In addition, the editors of this
issue had hoped that Dr. Van Vliet would make a presentation at BASIC 2017,
given the relevance of quantum fluctuations to current theories of structure for-
mation in the early universe. Unfortunately, Dr. Van Vliet passed away on 15
July 2016, and these hopes were not realized. Nevertheless, the editors have
decided to include the article in these proceedings.
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