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Abstract. Taking into account the available data on the mass sector, and with-
out any preconceptions about a specific matrix texture, we obtain quark mass
matrices with a kind of democratic underpinning. Our starting point is a factor-
ization of the “standard” parametrization of the Cabibbo-Kobayashi-Maskawa
mixing matrix, from which we derive a specific type of quark mass matrices.
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1 Mass States and Flavour States

In this project, we take a rather phenomenological approach to the quark mass
sector, by assuming that the quark mass matrices can be derived from a simple
factorization of the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [1],

Vud Vus Vub
V= Vud Vus Vub
Vud Vus Vub

which appears in the charged current Lagrangian

g -
Lcc = frﬁwL’y”Vd/LWu + h.C., (1)

where 1) and 1)’ are fermion fields with charges Q and Q — 1, correspondingly.

L. is usually interpreted as an interaction between left-handed physical parti-
cles with charge () and superpositions of left-handed physical particles of charge
Q@ — 1, e.g. between a (left-handed) up-sector quark and a superposition of (left-
handed) down-sector quarks. From the perspective of weak interactions, charged
currents should rather be interpreted as interactions between flavour states f, f”,
which are the fields that appear in the mass Lagrangian

‘Cmass:,fo_Ff/M/f/' )
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In our notation f, f’ are quark flavour states with charge 2/3 and -1/3, respec-
tively, and the corresponding mass matrices are denoted by M = M (2/3) and
M’ = M'(—1/3). In the context of weak interactions it is thus vital to distin-
guish between mass states and flavour states, the flavour states being the eigen-
states of the weak interactions, and the mass eigenstates correspond to the “phys-
ical particles” that take part in strong and electromagnetic interactions.

In this picture the flavour states all live in the same “weak basis” in flavour space,
while the mass states of different charge sectors live in their separate “mass
bases”. We can always assume that the mass matrices are Hermitian [3], so
they are both diagonalized by hermitian unitary matrices. We go from the weak
basis to the mass bases of the charge 2/3- and charge -1/3-sector, respectively,
by rotating the mass matrices M (2/3) and M’(—1/3) by the unitary matrices U

and U’, which are factors of the CKM-matrix, V = UU'T.
M — UMUT = D = diag(m.,, me, my) 3
M' — U'M'UT = D' = diag(mg, ms, mp) .

Since V' = UU't # 1, the up-sector mass basis is different from the down-sector
mass basis, and the CKM matrix bridges the two mass bases.

Mass basis of M: Mass basis of M

UMU' = diag(mm,, e, my) uM Ut = diag(ma, my, mg)

Weak basis:
M. M’

The mass Lagagrangian reads
Liass = fMf + f'M'f' = 9Dy + /D'y, “)

where f, f/ are flavour states and 1), 1)’ are mass states, and the elements of the
diagonal mass matrices D and D’ are the mass eigenvalues of the charge 2/3-
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and charge -1/3-quarks, respectively. It is the texture of the mass matrices M
and M’ in the weak basis that we are looking for, in the hope that they can shed
light on the mechanism behind the hierarchical fermion mass spectra.

It can be argued that flavour states merely exist in our fantasy, since they are
not directly measurable. This line of thought is however defied by the neutrinos.
Whereas in the quark sector there is a distinction between flavour states, where
mass states are perceived as “physical” and the weakly interacting flavour states
are defined as mixings of these physical particles, in the lepton sector the situ-
ation is quite different. This is due to the fact that as far as we know, neutrino
mass states never appear on the scene - in the sense that they never take part
in interactions, but merely propagate in free space. The neutrinos v, v,,, v, are
flavour states, but we nontheless perceive them as “physical”, because they are
the only neutrinos that ever appear in interactions, i.e. they are the only neutrinos
that we “see”.

A neutrino is defined by the charged lepton with which it interacts: what we
call the electron-neutrino v, is the superposition of neutrino mass states which
appears together with the electron, and likewise for 1 and 7; in that sense the
conservation of the lepton number is a tautology. The only mixing matrix that
occurs in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix U which exclusively operates on neutrino states,

Ve 1551
vp | =Uwpuns) |2 ]
Vr Vs

where (11,2, v3) are mass eigenstates, and (ve, v, v;) are the weakly inter-
acting flavour states. In the lepton sector, the charged currents are thus inter-
preted as (e, p1, 7) interacting with the neutrino flavour states (ve, v, v;) - and
the charged leptons are consequently defined as being both flavour states and
mass states.

2 Factorizing the Weak Mixing Matrix

The usual procedure in establishing an ansatz for the quark mass matrices is to
hypothesize a mass matrix of a specific form. Here we instead look for a “natu-
ral” factorization of the Cabbibo-Kobayashi-Maskawa mixing matrix, hoping to
find the “correct” rotation matrices U and U’ that diagonalize the mass matrices
M and M’.

The CKM matrix can of course be parametrized and factorized in many different
ways, and different factorizations correspond to different rotation matrices U
and U’, and correspondingly to different mass matrices M and M’. We choose
what we perceive as the most obvious and “symmetric” factorization of the CKM
mixing matrix, following the well-known standard parametrization [2] with three
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Euler angles «, 3, 26,

—is

CpC209 SpC20 520€ ,

V= _CBSQSQQGZ(S — 58Cq —SgSQSQQeZ‘S +cgca SaC20 —uUut. (®)]
—cﬂcaswe“; + 5385q —35ca.9296“5 — C8Sa CaC20

This corresponds to the diagonalizing rotation matrices for the up- and down-
sectors

1 0 0 el cosf 0sin6
U=W |0 cosa sina 1 0 1 0 wt
0 —sin « cos « Il —sinf 0 cos

coe™™ 0 sge”™
=W 75059&7 Co sac@e"7 wt (6)
—cCa 89" —Sq Cocpe””’

and
cos3 —sin30 e cosf 0 —sinf
U' =W [sing cosf 0 1 01 0 wi
0 0 1 e sinf 0 cos@
65096_%’7 —53 —05596_’7
=W | sgcoe™ c5 —spsge” |WT, (7
sget” 0 coe™

respectively, where W = W (p) is a unitary matrix which is chosen is such a
way that the same phase y appears in the mass matrices of both charge sectors,
i.e. a matrix of the form

0 cosp =£sinp cosp 0=xsinp cosp Esinp0
Wp)~11 0 0 , 0 1 0 , 0 0 1
0 Fsinp cosp Fsinp 0 cosp Fsinp cosp 0

Here the value of the parameter p is unknown, whereas «, 3, 6 and -y correspond
to the parameters in the standard parametrization, with v = 6/2, 6 = 1.2+ 0.08
rad, and 260 = 0.201 £ 0.011°, while o = 2.38 £ 0.06° and 5 = 13.04 4 0.05°.
In our factorization scheme, « and 3 are the rotation angles operating in the up-
sector and the down-sector, respectively. With the rotation matrices U («, 6, v, p)
and U’'(5,0,~, p), we obtain the mass matrices for the up- and down-sectors,
respectively,

M = U'diag(m.,, me,m;)U and M’ = U'Tdiag(mg, ms, mp)U’ .
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For the up-sector this gives

My1 My Mas
M = | May Moo Mas
M3y M3o M3
Xc2+Yss  Zspe ™ (X —Y)cysg
=Wi(p) Zsg e Y —2Zcot2a —Zcpe' | W(p), (8)
(X —Y)cpsg —Zcpe ™  Xsi+Ych

where X = my,, Y = mesin® a + mycos® o, Z = (my — me)sinacosa =
\/(mt -Y)(Y — m.), and m,,, m., m; are the masses of the up-, charm- and
top-quark; and W (p) is a unitary one-parameter matrix. Analogously for the
down-sector mass matrix,
My My Mig
M" = | M3y M, Mg
M3y Mgy M3
X'si+Y'ch Z'cy (X" —=Y")eyso
=W'(p) Z'cg e Y +2Z'cot2B —Z'sge | W(p) (9)
(X' —Y")cosg —Z'sg e X'c2+Y's}

where X' = my, Y/ = mgcos? B+ mgsin® 8, Z' = (ms — my)sin Bcos B =
\/(ms —Y’)(Y" — mg), and mg, ms, my, are the masses of the down-, strange-
and bottom-quark, respectively. The two mass matrices thus display similar
textures.

With Y = m,sin?® a4m; cos® a, Z = (m;—m.)sinacos o, Y’ = my cos? S+
mgsin® B, and Z' = (m, — my) sin ( cos 3, we can moreover write

my =X, me=Y —Zcota, m;=Y + Ztana,

10
mg=Y'—Z'tanf, ms=Y'+Z cotB, my=X', (10

3 The matrix W

There are of course many ways to chose a one-parameter unitary matrix, but we
choose a matrix W (p) which conveniently gives mass matrices with the same
phase v for both charge sectors,

cosp —sinp 0
W) =| o o0 1 (11)
sinp cosp 0

This gives the up-sector mass matrix

Xc2+Ysk Zsge ™ (X —Y)cosy
M=wt Zsg eV Y —2Zcot2a —Zcg e W =
(X —Y)cosy —Zcge™  Xsi+Ycl
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X cos? pu+ Ysin? pu (Y — X)sin pucos pp —Z sin pu e~

= | (Y —X)sinpcosp Xsin?pp+Ycos?>pp—Zcospe ™ |, (12)
—Z sin p e —Z cos e F
where p = p—60, X = m,, ¥ = mesin®a + mycosla, 7 =

V(e —=Y)Y —m.)and F =Y — 27 cot 2a = mc? + mys2.

Now, depending on the value of . = p — 6, we get different matrix textures, e.g.
for p — 6 = 0 or m, we get the simple form

X 0 0
MO,m =0 Y —Ze ™|, (13)
0 —Ze™ F

and for p — 6 = /2, equally simple

Y 0 —Ze ™
M(n/2) = 0 X 0 . (14)
—Ze 0 F

Applying the same procedure to the down-sector, we get the down-sector mass
matrix

X'sy +Y'cq Z'cye (X" =Y")coso
M =W(p)t Z'cope™™ Y'+27 cot 28 —Z'spe™™ | W(p)
(X' —=Y")copsy —7'spe™ X’cg + Y’sg

X'sin? y/ +Y'cos? p/ (X' —Y')sinp/ cos p/ Z' cos i’ e
= | (X' —=Y")sing/cosp/  X'cos®p/ +Y'sin? !  —Z'sinp/e?
Z'cos p'e™™ —Z'sin /e F’
15)

where 1/ = p+0, X' = mp, Y = mgcos®f + mysin®p, 7/ =
V(ms =Y )Y —mg) and F' =Y’ + 27" cot 28 = mgs? + msc. Again,
different y’-values correspond to different matrices, e.g. for /' = p+ 6 = 0 or
™, we get

Y' 0 Z'e™
M@Om=| 0 X' 0 (16)
Z'e”r 0 F'
and for i/ = p+ 6 = /2, we get
X’ 0 0
M@/2)=|0 Y —Ze (17

0 —Z'e ™ F'
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4 Texture Zero Mass Matrices

The matrices (13) and (14), as well as (16) and (17), make us wonder if our
scheme is compatible with quark mass matrices of texture zero.

The study of texture zero matrices is driven by the need to reduce the number
of free parameters, since the fermion mass matrices are 3x3 complex matrices,
which without any constraints contain 36 real free parameters. It is however
always possible to perform a unitary transformation that renders an arbitrary
mass matrix Hermitian [3], so there is no loss of generality in assuming that
the mass matrices are Hermitian, reducing the number of free parameters to 18.
This is still a very large number, which in the end of the 1970-ies prompted
Fritzsch [6], [7] to introduce “texture zero matrices”, i.e. mass matrices where a
certain number of the entries are zero.

Since then, a huge amount of articles have appeared, with analyses of the very
large number of (different types of) texture zero matrices and their phenomenol-
ogy. In the course of this work, a number of of texture zero matrices have been
ruled out. A handful of matrices have however been singled out as viable [8],
which among the texture 4 zero matrices are:

A BDO A BC A 0 B
B*DC|, B*DO0 ], 0o 0cC],
0C*0 cC*00 B*C* D
0 CO 0 0C DCB
C* A B, 0 ABJ, cC*00
0 B*D C*B*D B*0 A
while

A0 O A 0B

0 C B| and 0CO

0B*D B*0 D

are among the matrices that are ruled out. In our scheme this precisely corre-
sponds to the matrices (13), (14), (16) and (17), which gives a constraint on the
angle p,

1
p# §N m+0 (18)
where N € Z, ruling out the matrices M (3 Nm — 6) and M'($ N7 + 6). This
implies that our mass matrices M and M’ are not of texture zero. Instead, they

display a kind of democratic texture [4], a feature that has merely been outlined
in our earlier project [5].
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5 Democratic Mass Matrices

In the Standard Model, fermions get their masses from the Yukawa couplings
by the Higgs mechanism. We know that the fermion masses within one charge
sector are very different, but there is no apparent reason why there should be a
different Yukawa coupling for each fermion of a given charge. Taking the dif-
ference between the weak basis and the mass bases into account, the democratic
philosophy proclaims that in the weak basis, the fermions of a given charge
should have identical Yukawa couplings, just like they have identical couplings
to the gauge bosons of the strong, weak and electromagnetic interactions.

The democratic hypothesis thus implies that in the weak basis the quark mass
matrices for both charge sectors have an initial, “democratic” form

111
My=k|[111) =kN, (19)
111

where k has dimension mass; and the mass spectrum (0,0, 3k) reflects the
phenomenology of the fermion mass spectra with one very big and two much
smaller mass values - in the mass basis. In the weak basis the matrix My = kN
is however totally flavour symmetric, in the sense that the flavour states f; of a
given charge are indistinguishible and the initial mass Lagrangian reads

3

Loass =kINf= " kfif;

i=1,j=1

which is a totally flavour symmetric situation, with a discrete flavour symmetry
under the cyclic permutation group Z3 operating on the mass matrix. That the
Yukawa couplings are identical for all the flavours, while the mass eigenvalues
are so completely different is a reminder of the difference between flavour states
and mass states.

The democratic symmetry is unchanged if we add a diagonal matrix
diag(X, X, X) to kN, since the new democratic mass matrix My = kN +
diag(X, X, X) still corresponds to a completely flavour symmetric mass La-
grangian,

Lomass =fMof =k > fifi + XY fifi=(k+X)>_fif;.  (20)
i=1

ij=1 i=1

Moreover, since the up-sector mass matrix and the down sector mass matrix
in this assumed democratic initial stage are structurally identical, the mixing
matrix is equal to unity, so there is no CP-violation. In order to obtain the final
mass spectra with the three hierarchical non-zero values, the initial democratic
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symmetry must be broken in such a way that we get a mixing matrix and masses
that all agree with data. In the democratic scenario an ansatz thus consists of a
specific choice for the flavour symmetry breaking scheme. In our approach, it
however comes out of the formalism, without any presupposition of a democratic
texture or a specific breaking scheme.

5.1 Reparametrizing the mass matrices

By reformulating the matrix elements M1, Moo, M7, and M3, in the quark
mass matrices (3) and (15), using the relations

X, +Ysi =Y -X)s, +X, Xsi+Yc,=(Y—X)c,+X, and
X'st, +Y'c, = (Y = X'),+ X', and X'c,, +Y's) = (Y = X')sp, + X/,

the mass matrices can be rewritten in a way that reveals a kind of “democratic
substructure”,

Xep+Ysh (Y= X)sue —Zsue™
M=|(Y—-X)suc, Xs,+Yc —Zcye

—Zs, e —Zc,e™ I
sin 111 sin
=B COS 14 111 COS [
Ge™ 111 Ge ™
X
[ x @1
X+ A
and
X's?, +Y'e, (X =Y)spew  Zlew e
M = | (X' =Y)spew X' +Y'sh,  —Z'su e
Z'e, e —Z'sy e F’
cos 111 cos p’
=B — sin 111 — sin '
Gle=™ 111 G'e™
X/
+ X/ , (22)
X' 4+ A
where

X =my, uw=p-—=0, B:YfX:mcsi+mtci—mu,
(my — me)Saca (me —my) (my — my,)

G:— A:

(mes2 +myc2 —my,)’ (mes2 +myc2 —my,)’
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and

Xl:mbv MI:p"’_ga BIZY/—X/ZmSS%—I—mdc%—mb,

o - (ms —ma)sscs = (ma —my)(ms —my)
(mdc% + mss% —mp)’ (mdc% + mss% —mp)’
-Y
o = arctan ( ;’”) — 2.38 + 0.06°,
e

V7 =
B = arctan <, /"&f) — 13.04 + 0.05°.
ms —

The matrices of the two charge sectors thus display great similarities. That A #
0 and A’ # 0 moreover means that m. # My, my # My, Mg 7 My and
mg # my, and with the additional condition m. # m; and mq # my,, we almost
have the prerequisite for CP-violation - which basically says that CP-violation
occurs once there is a third family (and a complex phase).

6 Discussion

We interpret the structure displayed by (21) and (22) as the result of an in initial
democratic matrix, where the flavour symmetry undergoes a stepwise breaking,
each step corresponding to one term. If we consider the up-sector, the first term
comes from

111
My=k|[111
111
sin p 111 sin p
=M, =B COS [ 111 COS [t , (23)

Ge™ 111 Ge™™

where k£ and B both have the dimension mass. This first symmetry breaking
step really corresponds to shifting the flavours in such a way that f; — s, f1,
f2 = cuf2, f5 = Ge™ f3. The mass spectrum still consists of two massless
and one massive state, but the flavour symmetry is partially broken, with the
mass Lagrangian

Linass = fM1f = Xax1 + X1x2 + X2X1 + X2x2 = (X1 + X2) (X1 + X2),

where x1 = B(sufi1 + cuf2), xo = BGe " f5. The original total flavour
symmetry is thus broken down to the partial flavour symmetry f; < fa, but
there is still only one non-vanishing eigenvalue.
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In the next step, by shifting the origin from diag(0, 0, 0) to diag(X, X, X), we
obtain a mass spectrum with one very heavy, massive state, and two lighter states
with mass X, i.e.

sin p 111 sin
M, = My, =8B Cos 4 111 COS [
Ge™ 111 Ge ™™
X
+ X , (24

X

where X has dimension mass.

In the last step, the remaining degeneracy in the mass spectrum (X, X, X +
B(G? + 1)) is subsequently broken, by adding the term diag(0,0, A), where
A has dimension mass. We argue that this last breaking is necessitated by the
principle of minimal energy, in analogy with the Jahn-Teller effect.

sin p 111 sin p
My = Ms =18 cos [ 111 cos [t
Ge™ 111 Ge ™
X 0
+ X + 0 . (25)
X A

We identify our scheme as a democratic scenario, where the flavour symmetry
is broken in the specific way described above,

111 a a
Mo=k|111|kN= B b N b
111 c c*
a a X
=B b N b + X
c c* X
a a X 0
=B| v |N[ b + X +1 0 ; (20
c c* X A

where 0 < |a| < 1,0 < [b| < 1,0 < |¢| < 1,a® +b? = 1.
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7 Numerical values

In order to get a notion of the sizes of the parameters B, G, X, A, we calculate
their values for quark masses at different . Using quark masses at Mz, [9],
(101, [11]

my(Mz) = 1.24 MeV, me(Mz) = 624 MeV,
mi(Mz) = 171550 MeV  ma(Mz) = 2.69 MeV, @7
ms(My) = 53.8 MeV, my(Myz) = 2850 MeV

we get the numerical values for the parameters:

B = 171254 MeV = m; cos® a G = 0.0414 =~ tan «
X =1.24 MeV A = 623.83 MeV ~ m,. cos «

and

B' = —2844.71 MeV =~ 2mg —m; G’ = —0.0039
X' = 2850 MeV A" = —2798.76 MeV ~ ms — mg — my,

and as before, we use the angles «« = 2.38° and 5 = 13.04°.

We would also like to establish some numerical value, or at least a range, for
the parameter p. Our initial assumption was that the matrices (6), (7) which
diagonalize the up-sector and down-sector mass matrices, are given by the fac-
torization of the Cabibbi-Kobayashi-Maskawa matrix (5). The parameters of the
CKM matrix are well-known, so the only remaining “steering-parameter” is p.
The angles 1 and i in the mass matrices of the up- and d-sector depend on p,
whose value is unknown. We have the constraint

p %NW +0 (28)

which excludes some values of p, but it remains unknown what value(s) p actu-
ally takes.

8 Conclusion

By factorizing the “standard parametrization” of the CKM weak mixing matrix
in a very natural and straightforward way, we obtain mass matrices with a type
of structure that can be derived from a democratic texture, followed by a well-
defined scheme for breaking the primary flavour symmetry. This democratic
texture unexpectedly emerges from our factorization of the weak mixing matrix,
there is no presupposition about what form our resulting mass matrices would
have. There are no assumptions other than our factorization scheme and the
choice of the unitary matrix W (p).
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