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Abstract. As is well known, qubits are the fundamental building
blocks of quantum computers, and more generally, of quantum infor-
mation. A major challenge in the development of quantum devices
arises because the information content in any quantum state is rather
fragile, as no system is completely isolated from its environment.
Generally, such interactions degrade the quantum state, resulting in a
loss of information.

Topological edge states are promising in this regard because they are
in ways more robust against noise and decoherence. But creating and
detecting edge states can be challenging. We describe a composite sys-
tem consisting of a two-level system (the qubit) interacting with a finite
Su-Schrieffer-Heeger chain (a hopping model with alternating hopping
parameters) attached to an infinite chain. In this model, the dynamics
of the qubit changes dramatically depending on whether or not an edge
state exists. Thus, the qubit can be used to determine whether or not an
edge state exists in this model.
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1 Introduction

The two-level system (TLS) is the simplest nontrivial quantum system. Its sim-
plicity notwithstanding, many important systems are TLSs. Some familiar ex-
amples are: a spin-1/2 particle (two spin states), a photon (two polarizations), a
two-level atom (the two levels), a quantum dot (empty/full), two-meson systems
(K, K̄), two-flavour neutrino oscillations (ν1,2). Some of the above play the
role of qubits, the building blocks of quantum information systems (quantum
computers, teleportation, etc).

An isolated TLS, like any isolated quantum system, will evolve unitarily. This
implies that pure states remain pure; assuming the two basis states are coupled,
a system put in one state will oscillate back and forth between the two.

However, no system is perfectly isolated; in reality, a TLS interacts with its
environment and becomes entangled with it. From the point of view of the TLS,
entanglement with the environment is indistinguishable from a mixed state. We
say that the pure state becomes impure, or it decoheres. In addition, in many
TLSs (including the one we will study here) the interaction can permit a particle
to escape from the system to the environment. In this case, from the point of
view of the TLS probability is not conserved.

Decoherence and nonconservation of probability are almost always undesirable;
in particular, decoherence results in a loss of information and also a loss of the
potential advantage of quantum vs classical computing, quantum vs classical
communication, etc. Thus, understanding (and, usually, minimizing) decoher-
ence is critically important to the functioning of quantum devices. As an exam-
ple, in [1] a tripartite system was studied: a TLS coupled to one end of a finite
chain (or channel) whose other end was coupled to a semi-infinite chain; both
chains were described by tight-binding Hamiltonians. The question addressed
was: how can one reduce the decoherence of the TLS? It was found that adding
noise to the channel did the trick, essentially due to Anderson localization: if
excitations in the channel are localized, it becomes hard for a particle in the TLS
to make its way to the far side of the channel and escape to infinity.

Here, we study a similar system with a very different goal in mind (Figure 1).
The main difference is that the channel is a Su-Schrieffer-Heeger (SSH) [2] chain
(free of disorder) described by a hopping parameter with alternating hopping
strengths. Such chains have topological edge states (for a review, see [3]), and
rather than trying to minimize the decoherence of the TLS, we imagine measur-
ing its decoherence rate to determine whether the system to which it is attached
has edge states. As we will see, the presence of edge states greatly increases the
decoherence rate.
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Lead SSH chain TLS
tL t1 t2 tC τt1 t2 ϵ1ϵ2

Figure 1. Tripartite system geometry. Rightmost SSH chain hopping parameter is t1 or
t2 depending on whether number of sites N is even or odd, respectively (odd case shown
here).

2 Two-Level System: A Brief Review

We review the isolated TLS, mostly to establish notation to be used in what
follows. The TLS Hamiltonian is

HDD =

(
ε2 τ
τ ε1

)
≡
(
ε0 − δ0/2 τ

τ ε0 + δ/2

)
. (1)

The energies are λ± = 1
2 (ε1 +ε2±δ) = ε0± δ

2 , where δ =
√

(ε1 − ε2)2 + 4τ2.

The energy-dependent Green’s function is defined byGDD(E) = (E−HDD)−1;
its Fourier transform gives the time-dependent Green’s function, which is a sum
of oscillatory terms with frequencies given by the energies; for instance,

GDD
12 (t) = −2πiτ

δ

(
e−iλ+t − e−iλ−t

)
. (2)

When we couple the TLS to the rest of the system, it will decohere; this will be
seen in the Green’s function, which will exhibit decaying behavior [1].

3 Su-Schrieffer-Heeger Model and Edge States

The SSH Hamiltonian [2], proposed in the context of the polymer polyacetylene
for reasons we will not go into here, is

HSSH =



0 t1
t1 0 t2

t2 0 t1

t1 0
. . .

. . . . . . t
t 0


, (3)

where t = t1 or t2 for N even or odd, respectively. We will assume t1, t2 > 0
for simplicity, and for now we assume N is even and write N = 2M . Much of
what follows is known [4–7]; we repeat it to establish notation and to focus on
results to be used below.
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To solve the Schroedinger equation, translational invariance (by two sites) sug-
gest the following ansatz:

|ψ〉 =

M−1∑
n=0

(A |2n+ 1〉+B |2n+ 2〉) ein2k. (4)

We can take k between±π/2 since k → k+π has no effect on |ψ〉. The middle
components of the Schroedinger equation (all but the first and last) determine
the dispersion relation and also the ratio A/B. The former is

E2 = t21 + t22 + 2 t1t2 cos 2k. (5)

Assuming k is real, (t1− t2)2 < E2 < (t1 + t2)2 so there are two energy bands.
For any allowed energy, 5 has two equal and opposite solutions for ±k where
we assume k > 0. Thus the general solution to the middle equations is a linear
combination of the solutions for ±k.

The edge components of the Schroedinger equation (the first and last) determine
the ratio of these two solutions, and also the energy eigenvalues. The latter are
given by the solutions of the following equation for k, where r = t1/t2 and we
have written sj = sin(jk).

r sN+2 + sN = 0. (6)

where r = t1/t2 and we have written sj = sin(jk).

This equation cannot be solved analytically; however, numerically or graphically
(see Figure 2) we find that there are N real solutions, as required, for r > rC
whereas there are two fewer real solutions for r < rC, where [4]

rC ≡
N

N + 2
. (7)
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Figure 2. Graphical solution of (6) for N = 6 (rC = 0.75). Left panel: r = 0.9; six
solutions. Right panel: r = 0.7; four solutions. (Note that k = 0,±π/2, although
solutions of (6), do not correspond to solutions to the SE.)
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Thus, for r < rC there are two missing solutions. These turn out to be solutions
of complex wave number, k = π/2± iκ, where κ is the positive solution of

sinh(Nκ)

sinh((N + 2)κ)
= r. (8)

the solution of which is displayed in Figure 3 for various values of N . These
states, having complex k, are exponentially confined to the edges of the system:
they are edge states. Also displayed is l = 1/κ, the penetration length of the
edge states. As r → rC from below, we see that the length scale goes to infinity;
the “edginess" of the edge states becomes irrelevant if l� N .
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Figure 3. Decay rate κ and decay length l of edge states for various values of N . Also
displayed is an analytic solution to (8) for N →∞.

We conclude with a brief discussion of the case N odd, which is in fact much
simpler. It is easy to show that no matter the value of r, there is always exactly
one zero-energy edge state (the remainder of the spectrum being symmetric).
This state is confined to the left (right) edge for r < 1 (r > 1) with decay length
l = 2/| log r|. Figure 4 displays the spectra for N = 20 and 21.

4 Tripartite System: Chain-SSH-TLS

We now study the tripartite system displayed in Figure 1. Although it is an
infinite-dimensional system, the effects of the SSH chain and semi-infinite chain
on the TLS can be nicely incorporated into a 2× 2 effective Hamiltonian for the
TLS; these effects are simply given by a term added to the (1, 1) component of
the Hamiltonian [7, 8]:

ε2 → ε2 + ΣSSH,∞ ≡ ε′2. (9)
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Figure 4. Energy spectra for two values of N as a function of r. The shaded regions are
the bands for N = ∞. Dotted lines outside the bands are edge states. The inset on the
left focuses on the transition between an edge state (to the left of the vertical broken line)
and a non-edge state (to the right, in the shaded region).

Here ΣSSH,∞ is proportional to the surface Green’s function of the combined
SSH chain and semi-infinite chain. This can be calculated analytically, although
it is fairly nasty. The result is [7]

ΣSSH,∞ =


tC

2 Et2sN − Σ∞(t1sN−2 + t2sN )

t22(t1sN+2 + t2sN )− Et2Σ∞sN
(N even)

tC
2 t2(t2sN−1 + t1sN+1)− EΣ∞sN−1
t1t2EsN+1 − t1Σ∞(t2sN+1 + t1sN−1)

(N odd)

(10)

where

Σ∞ =
tL

2

2

(
E − i

√
4− E2

)
. (11)

Note that ε′2 is complex, so the effective Hamiltonian is no longer Hermitian.
This is related to the open nature of the TLS: being non-Hermitian, time evolu-
tion preserves neither probability nor purity, reflecting the fact that the particle
can escape to its environment, and that the TLS and environment become entan-
gled.

Defining λ′± and δ′ as the quantities defined in Section 2 with the substitution
(9), we can use these substitutions in the definition of GDD(E) given earlier to
get the new energy-dependent Green’s function, GDD

SSH,∞(E). It is tempting to
suppose that these substitutions also work for the time-dependent Green’s func-
tion. This is not quite correct, since λ′± depend in a highly nontrivial way on
E so the Fourier transform cannot be evaluated exactly. An analytical approxi-
mation which is justified in the weak-coupling limit (tC � 1) [1] indicates that
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to a good approximation the new (complex) frequencies λ′± can be evaluated
at the old frequencies: the time-dependent Green’s function has, according to
this approximation, frequencies λ′±(λ±). According to this analytic approxima-
tion, the decay rates are given by the imaginary part of the frequencies, and we
conclude that the decoherence time τφ is given by

(τφ)
−1 ≈ min

(
−1

2
={ΣSSH,∞(λ±)± δ′(λ±)}

)
. (12)

This analytical approximation can be justified post hoc by comparing (12) with
a numerical evaluation of the decoherence rate. Both are displayed in Figure 5.
The figure, which encapsulates our main result, merits some discussion. There
are four cases to consider, two for each graph.

Figure 5. Decoherence rate as a function of N for t1 = 1/t2 = 1.1 (left), t2 = 1/t1 =
1.1 (right). For both figures, (ε1, ε2, τ, tC, tL) = (.4022, .0022, .03, .035, .65). The
values for ε1,2 were chosen so that the isolated TLS has a zero eigenvalue, corresponding
exactly (N odd) and approximately (N even) to the edge state energy. The energy of the
other TLS state lies in the SSH gap.

The graph on the left corresponds to r = 1.21, for which there are no edge
states if N is even, while there is a right edge state if N is odd. If N is even,
both TLS states lie in the gap, so there are no SSH states with which they can
hybridize. Thus, the SSH chain represents a sort of potential barrier impeding
escape of the particle to the semi-infinite chain. As a result, the tunneling rate
decreases exponentially with N beyond about 20. If N is odd (blue, upper
curve), the right-hand edge state couples strongly to the TLS forming a pair
of hybridized wave functions which penetrate the SSH chain. This penetration
facilitates decoherence, and the rate remains large as N increases. Since the
hybridized wave function itself drops off exponentially away from the right edge
of the SSH chain, its effect on decoherence drops off as N increases; although
this is not apparent in Figure 5, if we continue the graph beyond aboutN = 120,
this effect is clearly seen [7]: eventually the blue curve on the left drops much
like the red one does.
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The graph on the right corresponds to r ' 0.83, for which there are two edge
states if N is greater than 10 and even, while there is a left edge state if N is
odd. Again, the behavior is dramatically different for even vs. odd parity. If
N is even (red, upper curve), the presence of edge states results in hybridized
wave functions which facilitate decoherence. As was discussed above (r = 1.21,
N even), the decoherence is relatively independent of N until around N = 120,
after which it drops exponentially. IfN is odd (blue, lower curve), the absence of
an edge state on the TLS side of the SSH chain impedes hybridization and giving
rise to exponential decoherence suppression asN increases starting aroundN =
30.

While we believe the presence or absence of edge states explains in general terms
the behavior exhibited in Figure 5, one unresolved issue is why the dropoff in
decoherence begins where it does. It is easy to show that for the parameters used
the edge states have a characteristic width of about ten sites, so it is puzzling why
the enhanced decoherence illustrated by the upper curves persists until beyond
N = 100.

5 Conclusions

The interaction between a TLS and its environment can have a strong effect on
the dynamics of the TLS. Here, we argued that coupling to one end of an SSH
chain (which is coupled at the other end to an undimerized infinite chain) can
have a very strong effect on the decoherence of the TLS. The effect is dramati-
cally different depending on whether there is or is not an edge state at the TLS
end of the SSH chain: an edge state causes decoherence to remain high inde-
pendent of chain length, wereas in the absence of an edge state decoherence
decreases exponentially with chain length. This suggests using a TLS as a sort
of edge state detector.
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