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Abstract. In this paper, we present a reconstruction of an f(R) gravity cos-
mological model from polytropic scalar field. For the purpose of reconstruction,
we consider an equivalence between the f(R) gravity and scalar-tensor gravity
and obtain exact forms of f(R) functions and the scalar field potentials. Fur-
ther, we study the universe under two asymptotic scenarios of early universe and
late universe and obtain the forms of the function f(R) and the corresponding
potentials. We find that the functions f(R) satisfy the viability conditions.
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1 Introduction

Einstein’s General Theory of Relativity is the best theory of gravitation that we
have today [1]. From the expansion of the universe to the merger of black holes,
general relativity has been consistently able to explain a number of cosmologi-
cal phenomena [2—4]. But there are some phenomena which have evaded con-
vincing explanation - like dark matter [5, 6] and the accelerated expansion of
the universe [7, 8]. Dark matter is generally believed to be an unknown form
of non-luminous, very low interacting matter. Compared to dark matter which
have been around for many decades, the phenomenon of cosmic acceleration is
a relatively new discovery. Supernova Type Ia observations [7, 8] were the first
to suggest that our universe is currently undergoing an accelerated expansion.
Subsequently, a combination of results from Cosmic Microwave Background
(CMB) and observations of galaxy clustering revealed more evidence in favour
of it [5,9]. Cosmic acceleration contradicts the conventional understanding of
the gravity under whose effect all the objects in the universe attract each other.
This renders cosmological models with previously unknown properties i.e. ei-
ther a model of the universe where gravity is overcome at large scales by some
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unknown repulsive force or gravity behaves differently at large scales. The best
model so far which explains the phenomenon of accelerated expansion is the
ACDM model with equation of state parameter w = —1 but it lacks theoretical
origins [10]. Now, it is accepted widely in the field of cosmology that as much
as 2/3 of the total density of the universe is in a form which has large negative
pressure and is known as the so called dark energy.

There have been other attempts also to explain the acceleration, namely, the dy-
namical dark energy and the modified gravity models [11, 12]. Dynamical dark
energy models have a variable equation of state parameter w. Some of the pop-
ular dynamical dark energy models are quintessence [13], k-essence [14], quin-
tom dark energy [15], phantom dark energy [16], tachyon dark energy [17] and
so on. In modified gravity models, one modifies the curvature part of the Einstein
Field Equations which result in the observed acceleration. Some of the popu-
lar modified gravity models are f(R) gravity [18], f(R,T) gravity [20], f(T)
gravity [21], f(G) gravity [22] and so on. f(R) theory of gravity is the simplest
modification to Einstein’s General Theory of Relativity wherein the Ricci scalar
R is replaced by a more general function f(R) of R [18,19]. The field equations
from the action in f(R) theory of gravity can be obtained in three ways namely
metric formalism, Palatini formalism and metric-affine formalism. In the metric
formalism, the affine connection I}, depends on g,,, [24] and the matter is mini-
mally coupled to the metric. In the Palatini formalism, I'}},, and g,,,, are treated as
independent variables and the action is varied with respect to both the metric and
the connection [25]. In the metric-affine f(R) gravity [23], one uses the Palatini
variation but abandons the assumption that the matter action is independent of
the connection. The modified field equations thus obtained are of fourth degree
and result in different evolution of the universe than as predicted by general rel-
ativity. f(R) gravity has a long history with the origins being loosely traced
to Weyl’s 1919 theory in which a term quadratic in the Weyl tensor was added
to the Einstein-Hilbert Lagrangian [26]. Later authors like Eddington [27] and
Buchdahl [24] also studied f(R) gravity. Further, it was realized that quadratic
corrections to the Einstein-Hilbert action were necessary to improve the renor-
malizability of general relativity [28]. A number of authors have also studied
astrophysical implications of f(R) gravity [29-32]. f(R) gravity theories are
also considered to be an important candidate as one can avoid the Ostrograd-
ski instability [33]. f(R) gravity theories have also shown to satisfy viability
conditions in order to avoid instabilities and astrophysical constraints. Recently,
Mishra and Sharma have obtained a new shape function for wormholes in f(R)
gravity and general relativity [34]. Malik and Shamir have studied the dynamics
of some cosmological solutions in modified f(R) gravity [35]. Capozziello et
al have studied cosmological perfect-fluids in f(R) gravity [36]. Capozziello et
al have also derived the gravitational energy—momentum pseudotensor in metric
f(R) gravity and in teleparallel f(T") gravity [37]. The modified field equations
and the evolution equations resulting from a nonlinear f(R) in the action can
also be seen simply as the addition of a new scalar degree of freedom.
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One of the most studied alternative theories of gravity is the scalar—tensor the-
ory where the gravitational action contains, apart from the metric, a scalar field
which describes matter part of the gravitational field [38]. In scalar-tensor the-
ories, different degrees of freedom are present such as scalar field, the coupling
constant and the cosmological constant as well. However, scalar-tensor theory
is still a metric theory as the scalar field is not coupled directly to the matter
and so matter responds only to the metric. The role of the scalar field is just
to intervene in the generation of the space-time curvature. Scalar fields arise
naturally in particle physics such as super-symmetric field theories and string
theory. The relation between scalar—tensor theory and f(R) gravity, and their
possible equivalence, has been studied by a number of authors in the literature.
The most commonly studied equivalence is that of the metric f(R) gravity and
Brans—-Dicke theory [39-41]. The Brans—Dicke theory is one of the special
classes of the scalar-tensor theory, where the coupling parameter w(¢) is sup-
posed to be independent of the scalar field ¢. It is considered to be constant and
hence the name ‘coupling constant’. f(R) gravity can be written in terms of a
scalar field by redefining the function f(R) by using a convenient scalar field
and then performing a conformal transformation.

To study the evolution of the universe in any theory, the field equations are gen-
erally solved. In the case of f(R) theory of gravity, the field equations are of
fourth order and thereby very difficult to solve analytically and numerically. But,
there is another approach to study these theories called reconstruction method.
In reconstruction method, one assumes that the history of expansion of the uni-
verse is known and then one can invert the field equations to find the form of
the f(R) gravity. In most cases, the reconstruction is done in the presence of
an auxiliary scalar which may be excluded at the final step so that any FRW
cosmology may be realized within specific reconstructed f(R) gravity. Nojiri
et al have developed a scheme for cosmological reconstruction of f(R) grav-
ity in terms of e-folding (or, redshift z) so that there is no need to use more
complicated formulation with auxiliary scalar [42]. Odintsov and Oikonomou
have introduced a bottom-up f(R) gravity reconstruction technique, in which
they fixed the observational indices and obtained the f(R) gravity which may
realize them [43]. Particularly, as an exemplification of this method, the authors
assumed that the scalar to tensor ratio has a specific form, and from it, they re-
constructed the f(R) gravity that may realize it, focusing on special values of
the parameters in order to obtain analytical results. In the present work, we con-
sider polytropic gas as a scalar field and reconstruct an f(R) gravity model. We
obtain the energy density of the polytropic gas in terms of the scalar field and
which in turn is obtained from the pressure and energy density of the polytropic
gas. The same method has been used in [44] by Sami et al to obtain f(R) gravity
from a Chaplygin gas scalar field in de-Sitter spacetimes.

A gas which obeys the polytropic equation of state is known as polytropic gas
and is generally termed as a polytrope in astrophysics. The polytropic equation
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of state is obtained as a solution of the Lane-Emden equation which is a dimen-
sionless form of Poisson’s equation for the gravitational potential of a Newtonian
self-gravitating, spherically symmetric polytropic fluid. It is a relation which
expresses an assumption about the change of pressure with radius in terms of
the change of density with radius. The polytropic equation of state is general
enough and has been found to be useful in many problems other than that of
polytropes. The polytropic equation of state originates from the polytropic pro-
cess which is a thermodynamic process and can describe multiple expansion
and compression processes. Polytropic gas models are employed to study vari-
ous phenomena in astrophysics and cosmology. For example, the polytropic gas
models are used to explain the equation of state of degenerate white dwarfs and
neutron stars [45]. Another application of polytropic gas models is the case of
main sequence stars where pressure and density are related adiabatically [46].
Mukhopadhyay and Ray first explored the idea of dark energy with polytropic
equation of state in cosmology [47]. The polytropic gas is a phenomenologi-
cal model of dark energy where the pressure p is a function of energy density
p. In [48], the authors have considered a polytropic gas as a candidate for the
interacting dark energy to investigate the validity of the generalized second law
of thermodynamics in non-flat universe enveloped by the dynamical apparent
horizon. Malekjani has investigated the polytropic gas dark energy model in
the non flat universe and reconstructed the dynamics and the potential of the
tachyon and k-essence scalar field models according to the evolutionary behav-
ior of polytropic gas model [49]. Karami and Khaledian have reconstructed
different f(R) gravity models corresponding to the polytropic, standard Chap-
lygin, generalized Chaplygin, modified Chaplygin and modified variable Chap-
lygin gas dark energy models [50]. T. Azizi and P. Naserinia have reconstructed
of f(G) gravity with polytropic and Chaplygin gas dark energy models. Karami
and Abdolmaleki have studied the correspondence between the interacting new
agegraphic dark energy and the polytropic gas model of dark energy in the non-
flat FRW universe [51]. Setare and Adami have identified the thermodynamic
parameters of a black hole with that of a polytropic gas, which obeys an in-
tegrability condition in [52]. Salti et al have reconstructed a variable form of
the original polytropic gas and compared the variable polytropic gas with the
original polytropic gas by focusing on recent observational data set given in lit-
erature including Planck 2018 results [53]. Khurshudyan et al have shown that
dark energy can be parameterized as a varying polytropic fluid [54]. In [55], P.
H. Chavanis has constructed models of universe with a generalized equation of
state p = (ap + k:pH% )c? having a polytropic component and a linear compo-
nent. The author has shown that polytropic gas with positive pressure (k > 0)
leads to past or future singularities whereas a negative pressure (k < 0) leads
to non-singular models. These models exhibit phases of early and late inflation
associated with a maximum density pn,.x = pp (Planck density) correspond-
ing to the vacuum energy in the past and a minimum density pyin = pa (cos-
mological density) corresponding to the dark energy in the future. J. Solanki
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has developed a model of gravitational collapse of anisotropic compact stars in
f(R) = R* theory of gravity [56]. Karami and Abdolmaleki have also estab-
lished a correspondence between the holographic dark energy density and the
polytropic gas scalar field model of dark energy [51]. M. Taji and M. Malekjani
have established a correspondence between the holographic dark energy model
and polytropic gas model of dark energy in the FRW universe. This correspon-
dence allows one to reconstruct the potential and the dynamics for the scalar
field of the polytropic model according to the evolution of holographic dark en-
ergy in the FRW universe [57]. M. Korunur, M. Salti, and O. Aydogdu make use
of the 5-dimensional polytropic gas model and calculate exact relations for the
tachyonic scalar field [S8]. Inspired by these results, we consider polytropic gas
as a scalar field and reconstruct the corresponding f(R) gravity model.

The paper is organised as follows: In Section 2, equivalence between f(R) grav-
ity and the scalar-tensor gravity is presented. In Section 3, we discuss polytropic
equation of state and the associated physical quantities of the polytropic gas. We
present two asymptotic cosmological scenarios of the early universe and the late
universe in Sections 4 and 5 respectively. We conclude the paper with a brief
discussion of the results obtained in Section 6.

2 f(R) Theory of Gravity

The action for f(R) theory of gravity is given by
S:/\/ng‘lx{;ﬁf(R)Jer} (D

where k = 87G, L) is the matter Lagrangian, f(R) is a function of the Ricci

scalar R and the action (1) reduces to the action for general relativity for f(R) =

R.

Variation of (1) with respect to metric tensor g,,,, yields the field equations

1
F(R)Ryy = 5 f(R)guw = ViV F(R) + 9 DF(R) = kT, ()
where 5 5L
T = ——= s 3)
V=g ogr
. - df (R) . . .
is the energy-momentum tensor, F'(R) = AR V. is the covariant derivative

associated with the Levi-Civita connection of the metric, and [1 = V#V is the
d’ Alembert operator.

To find equivalence with the f(R) gravity, we take the scalar-tensor gravity ac-
tion

5= [ vEata | i)+ L}, @)
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as given in [59], where f(¢(R)) is a function of ¢(R). The scalar field ¢ is
given by the relation
daf

¢=-r b &)

as considered in [60]. In this paper, we use the natural units convention (¢ =
kp = 87G = 1) and Latin indices a, b, ¢, ... running from 0 to 3 and use the
(—,+,+, +) space-time signature. We consider the polytropic gas as a scalar
field and obtain the energy density of the polytropic gas in terms of the scalar
field, and from the polytropic gas property, we obtain the polytropic gas pressure.

3 Polytropic Gas Model of Dark Energy

The polytropic equation of state is given by
1
p=rkp'tn,

where p is the pressure and p is the density of the polytropic gas, k& and n are
constants called polytropic constant and polytropic index respectively. Cosmo-
logically viable models can be constructed for both positive and negative values
of the constants k and n. A negative polytropic pressure can exhibit the phases
of early time inflation and late time cosmic acceleration. So, for a polytropic gas
model of dark energy, it is convenient to take k < 0 and the polytropic equation
of state in the form

p=—Kp'*s, ©6)

where K is a positive constant [50,61].

For our present work, we consider the universe to be flat and use the Friedmann
equation for flat geometry given as

a\’ p
(2) - @

with a being the isotropic scale factor. Assuming that the polytropic gas model
of dark energy obeys the conservation law of perfect fluid

) a
p+3_(p+p) =0, ®)
the energy density, from equation (6) is obtained as
p=(Cat+K) ", )

where C' is a constant of integration.

The equation of state parameter w = p/p for polytropic gas dark energy models
is obtained as

3w

Ca

Can + K

(10)



Reconstruction of f(R) Gravity from a Polytropic Gas Scalar Field ...

The energy density py and the pressure pg corresponding to the scalar field ¢
are given by

po =55 +V(9), (an
1.
po = 50"~ V(9). (12)

Adding (11) and (12), the scalar field ¢ can be written in terms of the energy
density and the pressure as

¢* =py+ Do (13)

Putting the pressure from (6) and the energy density from (9) in (13), we get
) Caze
o= TR AL — T (14)
(Ca% + K ) :
Also, we can express derivative of ¢ with respect to the scale factor a given as

$p=da, (15)

where prime denotes derivative with respect to the scale factor a. Substituting &

from (7) in (15), we obtain
¢ = il\/gds, (16)
a\Vp

which upon substituting qb from (14) results in
3Cazn 1

=
(Ca% —i—K)5

a7

On integrating (17), we get the scalar field ¢ in terms of the scale factor a as
¢(a) = £ log

K .
7 Car + -+ \/C2a» + CKa»

where ¢y is a constant of integration. From (11) and (12), the potential V' (¢) can
be obtained as

+C1, (18)

V(e) = F P (19)

Similarly, we can obtain the potential in terms of the scale factor a using (6) and
(9) as

(Ca% + K) o (C’a% + 2K)
5 )

V(a) = (20)

7
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For our present work, we consider a constant negative deceleration parameter ¢
given by

=2, @n
a
where 0 < m < 1. Integrating (21) twice, we get
J
a(t) = p(t —to) =", 22)

where p and ¢ are constants of integration.

Now, to obtain the form of the function f(R), we need a relation between the
Ricci scalar R and the scale factor a. For a spatially flat FLRW metric, the Ricci
scalar R is related to the scale factor a by

. 2 ..
R:6<a2+a). (23)
a a
Substituting (22) in (23), we get

a=yRTmT (24)

2(’”’L71) 1 _ 2 2(m—1)
where 7 = a ( m) . For the scale factor (24), the energy
6(1+m)

density p, the equation of state parameter w, the scalar field ¢ and the potential
V' are obtained as

p= {C”y%Rm +K}_ , 25)

1
w=—1+ — (26)
1+ £yt R we=D

3 3 K
¢(R) = £log ‘CWRm +5

+ \/027%1%% + CKYR"RTD | +¢;  (27)

CryeR7D 42K

and V(R) = : - rnl (28)
2 {C’ry;Rzn(m—m + K}
4 Early Universe
20 2v/Cax
In the early universe a ~ 0. Takingn > 1, — < 1, we get VCa < 1. As
K VK
a result, equation (18) gives
2nvC
by = +2YC o 1oy, 29)

V3K
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where ¢y is a constant.

And (19) gives
V(ie)=K™". (30)
Substituting the value of a from (24) in (29), we get
onVC s 3
R) =+ 20 RTn(m=1) 4 ¢o . 31
Using the relation (5), the function f(R) is obtained as
8n?V/C(m —1 : mn—dn
F(R) = +—— VO —1) 2 ™52 L Rie. ()

V3K (3 +4mn — 4n)

c3 being a constant of integration.

Further, from equation (29), we obtain the scale factor a in terms of the scalar

field ¢ as
3 3K

ar = 0 {p(a) — c2}” . (33)

Substituting a from above in equation (20), we obtain the potential as

Via) =K {1+ 5 0a) e} {14 o (9la) — )} G

4n? 8n?

Also, equating equations (30) and (34), we obtain a constraint relation for the
scalar field ¢ as

{14 o @) - c2>2}n+1 {1t ga@@-ar). 09

5 Late Universe

2C
In the late universe, a — oo. So, for n > 1 and e < 1, we have from (18)

¢(a) = +V3loga + ¢4, (36)
where c,4 is a constant of integration and

1

Substituting a from (24) in (36), we get
&(R) = £v/3log |[YRTm T | + ¢4 (38)
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Using the relation (5) and equation (38), we get
1 RlogR
=+ 1 —
sy = a3 L o= gy )+ 5

where c5 is a constant of integration. Also, from equation (36), the scale factor
a is obtained as

} +cyR+c5, (39)

o= ei%(d)(a)—u) ' (40)
Hence, the potential in terms of the scalar field ¢ is obtained as
V(@) = AtV 1)

B:I:\/gcl
where A =

. From the above equation, we can observe that the potential

is in exponential form which corresponds to a de-Sitter evolution of the universe
at late times.

6 Results and Discussion

In the present work, we reconstruct f(R) gravity cosmological models from
polytropic gas scalar field. The reconstruction is done by considering the fact
that f(R) gravity can be considered as a type of scalar-tensor gravity, partic-
ularly Brans-Dicke theory of gravity. For our purpose, we consider a function
f(#(R)) which is a function of a scalar field ¢ and the relation ¢ = % -1.A
polytropic gas with pressure p = —K pH% is considered and obtained the en-
ergy density, the equation of state parameter, the scalar field and the potential for
the cosmological model. All the parameters are shown as a function of the scale
factor a. We study the model so obtained in asymptotic cases of early universe
i.e. a — 0 and the late time universe i.e. a — co. For early universe, the scalar
field is obtained and used to obtain the function f(R). In addition, the potential
and a constraint relation for the scalar field are obtained. For the very late time
scenario, similarly we reconstruct the function f(R) using the polytropic scalar
field obtained. The scalar field obtained is a logarithmic function of the scale
factor @ and so is the function f(R).
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