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Abstract. We have applied the theory of the single-particle Schroedinger
fluid to the nuclear collective motion of axially deformed nuclei. A counter
example of an arbitrary number of independent nucleons in the anisotropic
harmonic oscillator potential at the equilibrium deformation has been also
given. Moreover, the ground states of the doubly even nuclei in the s-d shell
20Ne, 24Mg, 28Si, 32S and 36Ar are constructed by filling the single-particle
states corresponding to the possible values of the number of quanta of ex-
citations nx, ny , and nz . Accordingly, the cranking-model, the rigid-body
model and the equilibrium-model moments of inertia of these nuclei are cal-
culated as functions of the oscillator parameters ∼ ωx, ∼ ωy and ∼ ωz which
are given in terms of the non deformed value ∼ ω0

0 depending on the mass
numberA the number of neutronsN , the number of protons Z, and the defor-
mation parameter β. The calculated values of the cranking-model moments
of inertia of these nuclei are in good agreement with the corresponding ex-
perimental values and show that the considered axially deformed nuclei may
have oblate as well as prolate shapes and that the nucleus 24Mg is the only
one which is highly deformed. The rigid-body model and the equilibrium-
model moments of inertia of the two nuclei 20Ne and 24Mg are also in good
agreement with the corresponding experimental values.

PACS number: 21.60.Fw, 21.60.Cs

1 Introduction

It is well known that the shell model explains many nuclear properties, but fails to
account the large nuclear quadrupole moments and spheroidal shapes which many
nuclei posses. It is also clear that such effects cannot be obtained from any model
which considers the pairwise filling of the individual orbits of spherical potential to
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be a good approximation to nuclear structure. Such large effects can only arise from
coordinates motion of many nucleons. We may characterize such motion by assuming
that the particle motion and the surface motion are couples.

Because the surface is distorted at some moment, the potential felt by a particle is
not spherically symmetric, the particles will move in orbits appropriate to an aspheri-
cal shell-model potential. To express the particle-surface coupling mathematically, it
is necessary to introduce some collective variables to describe the cooperative modes
of motion. The simpler model has sometimes been called the collective model, and
the distorted shell model the unified model.

The nuclear collective rotation [1] is a topic of the nuclear structure theory some
fifty years old which has grown steadily both in the sophistication of its theory and in
the range of data to which it relates. The most central parameter of collective rotation
is the moment of inertia of deformed nuclei [2–5]. Consequently, the investigation
of the nuclear moments of inertia is a sensitive check for the validity of the nuclear
structure theories.

The quantum fluid [6] is considered to be completely transparent internally with
respect to motion of the constituent particles, and to receive disturbances solely by
way of surface deformations. Its near incompressibility comes about, not by particle
to particle push, as in an ordinary liquid, but by more subtle means. It is capable of
collective oscillations, but it is the wall which organizes these disturbances, not nu-
cleon to nucleon interactions. Oscillations experience a damping, but the mechanism
of the damping is unlike that encountered in ordinary liquids. The rotational properties
of the quantum fluid are quite different from those of ordinary fluids.

Moreover, the study of the velocity fields for the rotational motion led to the for-
mulation of the so-called the Schroedinger fluid [7]. Since the Schroedinger fluid
theory is at present an independent particle model, the cranking model approximation
for the velocity fields and the moments of inertia play the dominant role in this theory.

In the present paper we have applied the theory of the single particle Schroedinger
fluid to the nuclear collective motion and to the calculations of the nuclear moments
of inertia. Also, an example was given for an arbitrary number of independent par-
ticles in the anisotropic harmonic oscillator potential at the equilibrium deformation.
Moreover, the moments of inertia of the doubly even axially deformed nuclei in the s-
d shell: 20N, 24Mg, 28Si, 32S and 36Ar are calculated according to the concepts of the
single particle Schroedinger fluid for both of the cranking model and the rigid body
model. The equilibrium moments of inertia of these nuclei are also calculated.

2 The Schroedinger Fluid

The polar form of the time-dependentK th-single particle wave function is given by [8]

Ψ(r, α(t), t) = Φ(r, α(t)) exp

⎧⎨
⎩−iM� SK(r, α(t)) − i

�

t∫
0

εK(α(t′))dt′

⎫⎬
⎭ , (1)
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where α represents some time-dependent collective parameters, S is a real function
and Φ is a positive real function. In the case of rotation, the parameter α becomes
the angle of rotation, θ. The single-particle HamiltonianH is α dependent through its
potential and the time-dependent Schroedinger equation

H(r,p, α(t))Ψ(r, α(t), t) = i�
∂

∂t
ΨK(r, α(t), t), (2)

can be separated into real and imaginary parts, by using Eq. (1), and as a result two
equations are obtained. The first is the continuity equation

ρ∇.v + v.∇ρ = −∂ρ
∂t
, (3)

where the density ρ = Φ2 and the irrotational velocity field v is defined by

v = −∇S, (4)

S =
i�

2M
ln(Ψ/Ψ∗), (5)

The second equation is

(H + Vdyn)φi = εiφi, (6)

which is a modified Schroedinger equation through the modified dynamical potential

Vdyn = −M
(
∂S

∂t
− 1

2
v2

)
. (7)

In addition to the irrotational velocity field v, which has been result from the
fluid dynamical equation, other velocity fields which satisfy the continuity equation of
the Schroedinger equation occur. Among these velocity fields are the incompressible
velocity field, the regular velocity field, the geometric velocity field and the rigid body
velocity field. For rotations, the rigid body velocity field vrig is defined by

vrig = Ω × r. (8)

It is seen that this velocity field is incompressible, regular and also of a geometric
type.

In the adiabatic approximation where,
∂α

∂t
→ 0, the collective kinetic energy of a

nucleon in the nucleus is given by [8]

TK =
1
2
M

∫
ρKvT .(Ω × r)dτ, (9)

and the collective kinetic energy T of the nucleus is given by

T =
1
2
M

∫
ρTvT .(Ω × r)dτ, (10)
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where ρT is the total density distribution of the nucleus and vT is the total velocity
field

vT =

∑
K=occ

ρkvK∑
K=occ

ρk
(11)

3 Single Nucleon in the Harmonic Oscillator Potential

The single particle wave functions for a nucleon in the average harmonic oscillator
potential of the nucleus are given in the form of products of the three one-dimensional
oscillator functions given, in the usual notations, by

Unxnynz(x, y, z) = Unx(ξ)Uny(η)Unz (ζ), (12)

where

Unx(ξ) =

{
2nxnx!
√

π�

Mωx

}−1/2

exp
(

1
2
ξ2
)
Hnx(ξ), (13)

and nx = 0, 1, 2,... .
Similar equations hold for Uny(η) and Unz(ζ). In Eq. (13)Hnx(ξ) is the Hermite

polynomial of degree nx and the dimensionless variables ξ, η and ζ are defined by

ξ =

√
Mωx

�
x, etc. (14)

If the z-axis is an axis of symmetry, so that ωx = ωy, the intrinsic energy of the
single particle state is given by

εnx,ny,nz = �ωx(nx + ny + 1) + �ωz(nz +
1
2
) (15)

In the adiabatic approximation the K th single particle wave function is approxi-
mated by a sum of two functions one of which is real and the other is imaginary. The
first function, the quasi-static wave function, which is the real part of the wave func-
tion satisfies the quasi-static Schroedinger wave equation and the second function, the
imaginary part, is the first-order time-dependent perturbation correction to the wave
function and is given for rotation about the z-axis by [8]

μK = Ω
∑
j=K

〈j|Lz|K〉
εj − εK

Uj , (16)

where Lz is the z-component of the single-particle orbital angular momentum. We
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can calculate the cranking correction to the wave function explicitly, obtaining

μnx,ny,nz(x, y, z) = Unx(ξ)μnynz (y, z) =

= − Ω
2√ωyωz

Unx

{
σ
√
nynzUny−1Unz−1 +

1
σ

√
ny(nz + 1)Uny−1Unz+1

+
1
σ

√
(ny + 1)nzUny+1Unz−1 + σ

√
(ny + 1)(nz + 1)Uny+1Unz+1

}
. (17)

The functions with subscripts nx, ny, and nz are of arguments ξ,η and ζ, respec-
tively, and

σ =
ωy − ωz

ωy + ωz
, (18)

is a measure of the deformation of the potential.
We introduce one single parameter of deformation δ defined by [9]

ω2
x = ω2

0

(
1 +

2δ
3

)
= ω2

y, (19)

ω2
z = ω2

0

(
1 − 4δ

3

)
. (20)

The condition of constant volume of the nucleus leads to

ωxωyωz = const. (21)

Keeping this condition in the general case together with (19) and (20), ω0 has to
depend on δ in the following way [9]

ω0 = ω0(δ) = ω0
0

(
1 − 4

3
δ2 − 16

27
δ3
)−1/6

, (22)

where ω0
0 is the value of ω0(δ) for δ = 0. The value of the oscillator parameter �ω0

0

for nuclei with mass number A, number of neutrons N and number of protons Z is
given by [10]

�ω0
0 = 38.6A−1/3 − 127.0A−4/3 + 14.75A−4/3(N − Z). (23)

Another choice of the deformation parameter is defined as follows [9]

δ =
3
2

√
5
4π
β ≈ 0.95β. (24)

The parameter β is allowed to vary in the range −0.50 ≤ β ≤ 0.50.
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4 Cranking Model And Rigid Body Moments of Inertia

It is well known that the cranking model moment of inertia is defined by [11]

Jcr = 2M�2
∑
j=i

|〈j|Lx|i〉|2
εj − εi

. (25)

We now examine the cranking model moment of inertia in terms of the veloc-
ity fields. Bohr and Mottelson [1] show that for the harmonic oscillator case at the
equilibrium deformation, where

d

dσ

A∑
i=1

(Enxnynz )i = 0 (26)

and A is the mass number, the cranking model moment of inertia is identically equal
to the rigid body moment of inertia

Jcr = Jrig =
A∑

i=1

M〈y2
i + x2

i 〉. (27)

We note that the cranking model moment of inertia Jcr and the rigid body mo-
ment of inertia Jrig are equal only when the harmonic oscillator is at the equilibrium
deformation. At other deformations, they can, and do, deviate substantially from one
another [8]

The following expressions for the cranking model moment of inertia Jcr and the
rigid body moment of inertia Jrig can be easily obtained [8]

Jcr =
E

ω2
0

1
6 + 2σ

(
1 + σ

1 − σ

)1/2 [
σ2(1 + q) +

1
σ

(1 − q)
]
, (28)

Jrig =
E

ω2
0

1
6 + 2σ

(
1 + σ

1 − σ

)1/2

[(1 + q) + σ(1 − q)] (29)

where q is the anisotropy of the configuration which is defined by

q =

∑
occ

(
ny +

1
2

)
∑
occ

(
nz +

1
2

) , (30)

and E is the total single particle energy,

E =
∑
occ

[
�ωy(nx + ny + 1) + �ωz

(
nz +

1
2

)]
. (31)

Analyzing the experimental data concerning the ground states of the nuclei 20Ne,
24Mg, 28Si, 32S and 36Ar one can easily fill the occupied orbits by neutrons and pro-
tons and as a consequence, formulas (30) and (31) can be easily calculated for these
nuclei.
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5 Results and Conclusions

In Table 1 we present the calculated values of the moments of inertia of some doubly
even deformed nuclei in the s-d shell: 20Ne, 24Mg, 28Si, 32S and 36Ar according to the
cranking model, Jcr, and the rigid body model, Jrig, formulas (28) and (29), together
with the values of the deformation parameter β and the oscillator parameter �ω0

0 . In
Table 1, also, we present the experimental values of the moments of inertia Jexp of
these nuclei, obtained from the low-lying rotational spectra of these nuclei [12].

Table 1. Moments of inertia of the nuclei 20Ne, 24Mg, 28Si, 32S and 36Ar.

Nucleus β �ω0
0 (MeV)

�2

2Jcr
(KeV)

�2

2Jrig
(KeV)

�2

2Jexp
(KeV)

20Ne 0.22 11.88 276.04 305.40 279.90
20Ne -0.24 11.88 281.30 328.21
24Mg 0.39 11.55 237.58 213.22 237.90
24Mg -0.44 11.55 232.29 244.43
28Si 0.26 11.22 321.36 192.41 324.60
28Si -0.29 11.22 320.83 212.26
32S 0.27 10.91 358.47 162.02 371.72
32S -0.32 10.91 365.38 179.23
36Ar 0.27 10.62 372.91 138.96 374.55
36Ar -0.32 10.62 370.22 152.78

In Table 2 we present the calculated values of the equilibrium moments of inertia,
Jequ, for the deformed doubly even nuclei in the s-d shell: 20Ne, 24Mg, 2SSi, 32S and
36Ar together with the values of the deformation parameter, β, at which the cranking
model and the rigid body model moments of inertia are equal, and the values of the
oscillator parameter �ω0

0 .
It is seen from Table 1 that the calculated values of the moments of inertia of

the considered nuclei according to the cranking model by using the concepts of the
single-particle Schroedinger fluid are in good agreement with the corresponding ex-
perimental values, a result which shows that the concept of this fluid is reliable and
can be applied successfully to deformed nuclei in the s-d shell. It is seen, also, from
Table 1 that the nuclei 20Ne, 28Si, 32S and 36Ar have nearly equal values of the defor-
mation parameter 0.22 ≤ β ≤ 0.27 (or −0.32 ≤ 0 ≤ −0.24). Table 1 shows, also,
that the calculated values of the moments of inertia according to the rigid body model
for the two nuclei 20Ne and 24Mg are in good agreement with the corresponding ex-
perimental values while the calculated values for the three nuclei 28Si, 32S and 36Ar
are not in agreement with the corresponding experimental values. Moreover, it is seen
from Table 1 that, according to the calculations, the considered deformed nuclei may
have oblate as well as prolate deformations. The analysis of the quadrupole moments
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Table 2. Equilibrium moments of inertia of 20Ne, 24Mg, 28Si, 32S and 36Ar.

Nucleus β �ω0
0 (MeV)

�2

2Jequ
(KeV)

�2

2Jexp
(KeV) [12]

20Ne 0.24 11.88 305.16 279.90
24 Mg 0.36 11.55 212.80 237.90
28Si 0.17 11.22 193.60 324.60
32S 0.14 10.91 163.30 371.72
36Ar 0.11 10.62 140.10 374.55

of the considered nuclei show that, among all the considered nuclei, the nucleus 28Si
may only have an oblate shape while the others have prolate deformations. Further-
more, according to the calculations the nucleus 24Mg is the only one which is highly
deformed, It may be more reasonable to assume that this nucleus has a triaxial shape
and not an axial shape.

It is seen from Table 2 that the values of the equilibrium moments of inertia of the
two nuclei 20Ne and 24Mg are in good agreement with the corresponding experimental
values while the equilibrium moments of inertia of the other three nuclei are not in
good agreement with the corresponding experimental values.
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