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1 Introduction

Quantum field theory (QFT) in four spacetime dimensions (4D) continues to
be a great challenge after many decades of intense research. While perturbative
and nonperturbative approximation schemes have proven most efficient for many
purposes, the rigorous construction of nontrivial theories has not been achieved.

On the other hand, in two dimensions (2D), many nontrivial models have been
constructed. A huge body of model-independent knowledge has been accumu-
lated in particular for conformal field theories; depending on the value of the
central charge, there are even classifications available.

To close the gap between 2 and 4 dimensions, one would like to be able to
transfer general knowledge from 2 to 4. This is (besides its manifold statistical
mechanic applications) the main raison d’être for the study of low-dimensional
models. In this contribution, we present a number of attempts hopefully lead-
ing to new insights into the structure of correlation functions in nontrivial 4D
conformal QFT which is admissible from an axiomatic point of view.

To have the maximum power of this approach available, we assume the strongest
form of conformal symmetry, called “global conformal invariance” (GCI) in [1,
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2]: the conformal group is implemented by a true representation on the Hilbert
space. This implies that the covariant fields have integer scaling dimensions and
satisfy Huygens’ principle, i.e., they commute not only at spacelike but also at
timelike distance. Moreover, their correlation functions are rational, and in fact
polynomial after multiplication with sufficiently high powers of Lorentz square
distances ρij = (xi − xj)2. While these features are conspicuously close to free
field theory, we shall indicate below why we expect nontrivial fields within this
highly restricted class. Notice that the massless free field in D > 2 dimensions
has scaling dimension (D − 2)/2, so this field does not satisfy GCI if D is odd.
Recall also that in D = 2, the massless free field does not exist because it is too
singular at zero momentum, but its gradient jμ = ∂μϕ can be defined. It is a
conserved vector current of scaling dimension 1 and decomposes into two chiral
fields j0(x) ± j1(x) = j±(x0 ± x1).

InD � 4 even spacetime dimensions, GCI proved to be a highly restrictive sym-
metry. In Section 2, we discuss the leeway it allows beyond free fields in terms
of the pole structure of correlation functions. Remarkably, the new features can
arise only in at least six-point correlations – which are hardly ever studied!

The main open question is, whether this leeway is compatible with Hilbert space
positivity. A powerful method to approach this question for four-point corre-
lations is the partial wave expansion; unfortunately, the partial waves are not
known for more than four points. Part of the subsequent sections about “re-
striction” is motivated by attempts to find alternative approaches to positivity
applicable to higher correlation functions, to which we return in Section 5.

2 Conservation Laws

2.1 Conserved Tensor Fields

Consider conformal symmetric traceless tensor fields of rank r and scaling di-
mension d. The quantity d− r is called “twist”. The fields of twist D−2, where
D is the spacetime dimension, are distinguished: their two-point function is de-
termined by conformal invariance and turns out to have zero divergence. By the
Reeh-Schlieder theorem it follows that these fields are conserved tensor fields:

∂μT
μ...ν = 0, (1)

with the exception of r = 0, d = D − 2. Except for the scalars, the twist D − 2
fields have the lowest possible dimension for the given tensor rank admitted by
the unitarity bound [3]. The scalars have been proven, inD = 4 dimensions [4],
to be either Wick squares of massless free fields, or generalized free fields. We
expect that a similar argument holds also in D = 2n = 6, 8, . . . dimensions
for scalar fields of scaling dimension D − 2. (This cannot be true for odd D
because the massless free field violates GCI, and also not forD = 2 because the
massless free field does not exist.)
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InD = 2, the distinguished fields are precisely those which decompose into chi-
ral fields: Symmetric traceless tensors have only two independent components
T++...+ and T−−...−, and by the conservation law, these depend only on x 0±x1.
Indeed, almost all our knowledge about 2D CFT relies on the presence of these
distinguished chiral fields, such as currents or the stress-energy tensor.

2.2 Biharmonic Fields

Also in even dimension D � 4, the presence of conserved tensor fields has
far reaching consequences. For definiteness, D = 4 throughout this section,
although the statements generalize to even D � 4. The operator product ex-
pansion of any pair of fields A and B can be organized according to the twist
of the composite fields. If A and A′ are scalar of equal dimension d, then the
lowest contribution to A′(x)A(y) after the vacuum contribution is that of twist
D− 2. Multiplying this contribution by ((x− y)2)d−1, one arrives at a “bifield”
VA′A(x, y), while all higher twist contributions are of higher order in (x − y) 2.
The infinitely many conservation laws for the local fields comprised in VA′A can
be cast into the simple form, called “biharmonicity” [5]

�xVA′A(x, y) = 0 = �yVA′A(x, y). (2)

Biharmonicity is a highly nontrivial feature. By a classical result [6], every
power series p in z ∈ Rn has a unique “harmonic completion” h = p + z 2 · q,
such that h is harmonic: �zh = 0, and q is another power series. But correlation
functions involvingVA′A(x, y) are harmonic both w.r.t. x and w.r.t. y. Therefore,
the contribution from VA′A(x, y) in a correlation functions involvingA ′(x)A(y)
must coincide with two a priori different harmonic completions (w.r.t. z = x−
y). The condition that the two completions coincide is found, for purely scalar
correlations, to be a universal third order linear partial differential equation to be
satisfied by the function U0 defined by

〈 · · · [A′(x)A(y) − 〈A′(x)A(y)〉] · · · 〉 =
1

((x− y)2)d−1

(
U0 +O((x − y)2)

)
,

where U0 is a Laurent polynomial in the Lorentz square distances ρxi = (x −
xi)2, ρyi = (y− xi)2, and ρij = ρji = (xi − xj)2 (xi are the coordinates of the
other scalar fields in the correlation), homogeneous of degree −1 in both sets
of variables ρxi and ρyi. When this condition is fulfilled, the contribution from
VA′A to the above correlation is the unique biharmonic completion V 0 of U0

〈· · ·VA′A(x, y) · · · 〉 = U0 +O((x − y)2).

The PDE to be satisfied by U0 reads
[(∑

i

ρyi∂ρxi

)(∑

i<j

ρij∂ρyi∂ρyj

)− (x↔ y)
]
U0 = 0. (3)
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Together with rationality, it is highly restrictive and constrains the admissible
form of U0 far beyond conformal invariance. In [4], it was shown that the only
poles of U0 in the arguments x, y ∈ R

4 can be of the form

P

ρa
xmρ

b
xn · ρc

ynρ
d
ym

with a, b, c, d � 0,

for some pair m �= n, where P is polynomial in ρxi and ρyi (i �= m,n), and
a Laurent polynomial in all other squared Lorentz distances ρ ij . We call this
structure a “double pole” if both a and b are positive, or if both c, d > 0.

The relevance of this observation is the following: Free field examples of bihar-
monic fields are :ϕ(x)ϕ(y): and :ψ(x)(xμ −yμ)γμψ(y):, where ϕ and ψ are the
free massless scalar and Dirac field. But correlation functions of Wick products
of free fields and their derivatives can only produce “single poles” with a = 0
or b = 0, and c = 0 or d = 0. Therefore, any double pole is a clear signal of a
nontrivial GCI CFT. On the other hand, double poles cannot arise in four-point
functions just because there are not sufficiently many variables. Therefore, this
signal can only be seen in at least five-point correlations [4].

An example of a six-point double pole structure was presented in [4]. A more
systematic study was made by one of us [7]. For a double pole as above, we call
a + b + c + d its order. A double pole structure (DPS) is a rational solution to
the PDE (3) ∑

a,b,c,d

Pabcd

ρa
xmρ

b
xn · ρc

ynρ
d
ym

involving nonzero terms with a and b > 0, or c and d > 0. Their polynomial
(in ρxi and ρyi, i �= m,n) coefficient functions turn out to be organized into
multiplets of sl(2), whose generators are the differential operators

2H =
∑

i�=m,n

ρxi∂ρxi − ρyi∂ρyi , X =
∑

i�=m,n

ρxi∂ρyi , Y =
∑

i�=m,n

ρyi∂ρxi .

More precisely, every DPS is a linear combination of DPSs obtained as follows.
Fix a pair of indices m,n. Fix four integers 0 � p < a, 0 � q < b. Let
� = p+ q and choose a monomial P	 of order � in the variables ρxi (i �= m,n).
P	 is then a highest weight vector of sl(2): HP	 = 	

2P	 and XP	 = 0. Let
k = a + b − � − 1 � 1 and choose a monomial Qk of order k in the sl(2)
singlet variables Rij = ρxiρyj − ρxjρyi (i, j �= m,n). Notice that for five-point
correlations, such singlets are not available, hence one can also exclude five-
point DPSs. These data, together with a Laurent monomial L in the variables
ρkl so as to saturate the scaling dimension of the scalar fields in the correlation
function, induce DPSs of maximal order μ = 2(a+ b) − �, whose double poles
of order = μ are given in closed form by

p∑

δ=0

q∑

ε=0

ρδ
xmρ

ε
xn ·ρq−δ

ym ρp−ε
yn

ρa
xmρ

b
xn ·ρb

ymρ
a
yn

(b − q)δ(−p)δ

(1 − a)δδ!
(a− p)ε(−q)ε

(1 − b)ε ε!

∣∣∣
�

2
,
�

2
−δ−ε

〉
·Qk·L,
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where the functions | 	
2 ,

	
2 − ν〉 = (−1)ν(−�)νY

νP	 are vectors of weight 	
2 − ν

in the irreducible highest weight sl(2) module generated by P 	 = | 	
2 ,

	
2 〉. These

contributions exhaust a two-dimensional rectangular sublattice within the lattice
a+ b+ c+ d = μ. The poles of order< μ are then determined recursively from
those of maximal order = μ, because equation (3) connects different orders. The
system is in fact overdetermined, but in all cases studied it could be solved. We
conjecture that this is always the case. The solution is unique up to DPSs of
lower maximal order.

Once the solution U0 to (3) is given, its biharmonic completion, i.e., the cor-
responding correlation function 〈· · ·VA′A(x, y) · · · 〉 solving (2), can be com-
puted recursively as a power series in (x − y)2. Unlike the correlations of lo-
cal fields, these correlations are always transcendental functions if U0 contains
double poles. In this case, VA′A cannot be Huygens bilocal, but is presumably
Einstein bilocal in general, as a case study in [8] indicates.

3 Restrictions

3.1 Timelike Surfaces

The restriction of a quantum field to a timelike hypersurface yields another
Wightman field in lower dimensions [9]. In this way, 4D fields give rise to
3D and to 2D fields. It is also known that conformal fields restrict to conformal
fields on the hypersurface, and the decomposition of conformal tensor fields can
be described in terms of “internal derivatives” of the original fields [6, 10, 11].

One can ultimately restrict the field to the time axis: because of Huygens locality,
this yields a local conformal 1D field depending only on x 0. Notice that this step
is quite different from the decomposition of conserved 2D tensor fields into their
chiral components, that depend only on x0 ± x1. Yet, in both cases one arrives
at Möbius covariant chiral fields!

To give an example: The correlation functions of restricted fields are just the
restrictions of the original correlation functions. In particular, free fields remain
free in the sense that the truncated correlations remain zero. Thus, if we restrict
the massless free field ϕ in D = 4 to the plane x2 = x3 = 0, we arrive at a
generalized free field with the two-point function

D(x− y)|R2 =
(2π)−2

(x1 − y1)2 − (x0 − y0 − iε)2

of scaling dimension d = 1. But because the spacetime dimension has changed,
its Källen-Lehmann weight is no longer a δ-function atm2 = 0 but a continuum
of all masses integrated with the measure dm2. Such fields do not possess a
stress-energy tensor as a Wightman field, because its two-point function diverges
[12]. Formally, one may assign an “infinite central charge” to this SET. One may
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actually represent the generalized free field in 2 dimensions as a “central limit”
n→ ∞ of

ϕn(x) = n
−

1
2

n∑

ν=1

ψν(x0 + x1) ⊗ ψν(x0 − x1)

where ψν are n independent chiral real free Fermi fields, hence the SET for φn

has central charge c =
n

2
→ ∞.

On the other hand, restricting ϕ to the time axis, its two-point function is just

D(x − y)|R = (2π)−2
( −i
x0 − y0 − iε

)2

,

the two-point function of a canonical chiral current j(x 0). The Wick square
:ϕ2(x): restricts to :j2(x0): = π−1T (x0), where T is the chiral stress-energy
tensor with c = 1.

3.2 Null Surfaces

A different option is the restriction to null hypersurfaces such as N = {x ∈
R4 : x0 = x1}. This case is not covered by the result in [9]. Yet, massive
free scalar fields can be restricted. More precisely, the naive restriction has an
infrared singularity, which can be cured by taking a derivative w.r.t. x+, where
x± = x0 ± x1. Then, defining ϕN (x+, x⊥) := ∂+ϕm(x)|x−=0, one computes

〈ϕN (x+, x⊥)ϕN (y+, y⊥)〉 =
1
4π

δ(x⊥ − y⊥) ·
( −i
x+ − y+ − iε

)2

. (4)

This restriction is an instance of the more general situation studied in [13]. The
result is nothing but an infinite system of canonical free currents jn(x+) =∫
d2x⊥ ϕN (x+, x⊥) fn(x⊥), where fn is an orthonormal basis of L2(R2). The

remarkable fact is that the vacuum fluctuations associated with the transverse
coordinates x⊥ ∈ R2 are completely suppressed [14], and these degrees of free-
dom are traded into an infinite-dimensional inner symmetry. Moreover, the re-
striction is independent of the original mass.

Looking at the field as a distribution, the construction means that the extension
to test functions of the form f(x+, x⊥)δ(x−) must be bought by the constraint
that f = ∂+g, where g is a test function on R3. Because the restriction is
independent of the mass, every scalar two-point function restricts to the same
result (4) times the integral over the Källen-Lehmann density. In particular,
two-point functions of scalar fields where this integral is divergent cannot be
restricted in the same way, such as the Wick square or non-superrenormalizable
interacting fields. Moreover, the derivatives ∂+ do not properly cure at the same
time the single contraction terms appearing in higher correlation functions.
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However, one can restrict the bifield :ϕm(x)ϕm(y): via

∂x+∂y+ :ϕ(x)ϕ(y):|x−=y−=0 = :ϕN (x+, x⊥)ϕN (y+, y⊥):.

(One may then well pass to coinciding points x+ = y+ after taking the deriva-
tives and smearing in the transversal space R2, but this is obviously not an oper-
ation on the Wick square itself.)

Form = 0, the bifield :ϕ(x)ϕ(y): is the simplest instance of a biharmonic field,
as discussed in the previous section. This suggests a speculation that biharmonic
fields can always be restricted. This expectation is supported by the solution to
the characteristic initial value problem for the wave operator in 4 dimensions, see
(5) below with m = 0, which immediately generalizes to bifields. We leave this
here as a conjecture, as another remarkable feature related to the distinguished
twist D − 2 fields and their conservation laws.

3.3 An exotic Restriction?

The action of the group SO(2, D) on the null cone ξ · ξ = (ξ 0)2 − (ξ1)2 − · · ·−
(ξD)2 + (ξD+1)2 = 0 in D + 2 dimensions induces an action of SO(2, D)/Z2

on the projective cone obtained by the identification ξ ∼ λξ (λ ∈ R \ {0}).
The projective cone is known as the Dirac space or conformally compactified
Minkowski spacetime MD ∼ (S1 × SD−1)/Z2, into which D-dimensional
Minkowski spacetime is embedded as the chart

xμ =
ξμ

ξD + ξD+1
(μ = 0, . . .D − 1),

so that SO(2, D)/Z2 becomes the conformal group. Restricting a 4D confor-
mal QFT to 2D, the relevant conformal group is SO(2, 2)/Z2 ⊂ SO(2, 4)/Z2,
embedded as the subgroup that fixes the restricted directions 2 and 3. This
2D conformal group is a direct product of two Möbius groups SO(1, 2) =
SL(2,R)/Z2 = SU(1, 1)/Z2 acting on the chiral variables x0 ± x1.

There is another embedding of two commuting Möbius subgroupsSO(1, 2) into
SO(2, 4)/Z2 as the subgroups that fix the directions 0, 1, 2 and 3, 4, 5 respec-
tively. One might wonder whether this subgroupG corresponds to some “exotic”
2D restriction.

The first objection is thatG has no two-dimensional orbits in the 4D Dirac space
M4, that could serve as the restricted 2D world hypersurface. But one could
envisage a more abstract situation following an idea of [15]: Let α (2)

g denote the
action of G on the 2D Dirac space M 2, and fix any double coneO ⊂M 2. Sup-
pose we find a subalgebra A on the Hilbert space of the unrestricted 4D theory
(whereG is unitarily represented) with the properties that U(g)AU(g)∗ ⊂ A for

all g ∈ G such that α(2)
g O ⊂ O, and U(g′)AU(g′)∗ commutes with A for all
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g′ ∈ G such that α(2)
g′ O ⊂ O′, where O′ is the causal complement of O in M 2.

In this case, we may consistently define

A(α(2)
g O) := U(g)AU(g)∗

for all g ∈ G. These algebras on the Hilbert space of the 4D theory would
then qualify as local algebras of a 2D CFT, satisfying local commutativity, con-
formal covariance and isotony. The problem with this is, however, that the L±

0

generators of the embedded subgroup do not have positive spectrum in the 4D
representation – which is related to the fact that their orbits in the 4D Dirac space
M4 are spacelike rather than future timelike. We shall briefly return to this in
Section 5.

4 Conformal Holography

4.1 Timelike Surfaces

The question arises to which extent one can recover a D-dimensional QFT from
its restrictions. Clearly, in some form the higher-dimensional conformal symme-
try group and its unitary representation must be present in the lower-dimensional
theory. It is possible [16] to give a system of axioms on the inner symmetries of
a lower-dimensional GCI CFT, which ensure that the theory can be extended to
a higher-dimensional GCI CFT.

4.2 Lightfront Holography

The characteristic initial value problem for the Klein-Gordon operator inD > 2
dimensions consists in finding a solution to (�x + m2)ϕm(x) = 0 with pre-
scribed values ϕN (x+, x⊥) of ϕ (as in Sect. 3.2) on the null (characteristic)
hypersurfaceN = {x ∈ R4 : x0 = x1} with sufficiently rapid decay.

A (unique?) solution is given in terms of the massive commutator function

Cm(x− y) =
∫

d4k

(2π)3
δ(k2 −m2)sign(k0)e−ikx

by

ϕm(x) = −2i
∫

N

dy+ d
2y⊥ Cm(x− y)|y−=0 ϕN (y+, y⊥). (5)

Notice the fact that the kernel Cm(x− y)|y−=0 solves the KG equation w.r.t. x,
and restricts at x− = 0 to

Cm(z)|z−=0 =
i

4
sign(z+)δ(z⊥) ⇒ ∂+Cm(z)|z−=0 =

i

2
δ(z+)δ(z⊥).

(5) not only solves the classical initial value problem, but is indeed a rela-
tion between quantum fields in different dimensions: namely, if one takes for
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ϕN (y+, y⊥) the chiral free field with two-point function (4) and computes the
two-point function of the r.h.s. of (5), one recovers the two-point function of the
massive free field in R

4.

(5) is an adaptation of a similar formula used in [17] to pull back a state on the
null future I+ of an asymptotically flat spacetime to a state on the bulk. The
feature that a (free) field in Minkowski spacetime can be reconstructed from its
restriction to the null hypersurface, which behaves like an infinite-component
chiral conformal field, was first pointed out by Schroer [14, 18].

Interestingly enough, the massive free field of any mass can be recovered from
the same conformal field theory on the lightfront, given by the free currents
jn(x+) (n ∈ N), just by choosing the mass in the commutator function Cm.
Schroer calls this “a different 4D spacetime organization of the same quantum
substrate” (given by the chiral theory). Such a thing is possible because of the
universality of the separable “inner” Hilbert space L2(R2).

4.3 2D Boundary Holography

In two dimensions, the presence of a boundary at x1 = 0 leads to a reduction
of the degrees of freedom because the boundary conditions imply that the left-
and right-moving chiral fields are no longer independent but coincide with each
other [19, 20]. In particular, the restriction of the chiral fields to the time axis (=
the boundary) coincides with this chiral subtheory, while the restriction of non-
chiral fields (not satisfying 2D Huygens locality) will in general be nonlocal on
the time axis, but relatively local w.r.t. the chiral subtheory. The full CFT in
the Minkowski halfspace x1 > 0 can be recovered from the nonlocal boundary
theory by a surprisingly simple algebraic construction [20].

Moreover, in a suitable state evaluated in the limit when all fields are localized
“far away from the boundary”, the correlations converge to those of an asso-
ciated full 2D CFT with two independent chiral subtheories [21]. The basic
mechanism that restores the full 2D degrees of freedom (in particular, two chiral
algebras) is the decoupling of left and right movers in the limit under considera-
tion, due to the cluster property of the single chiral theory. The GNS reconstruc-
tion from this factorizing state then produces the tensor product of two chiral
algebras.

5 4D Positivity

As mentioned before, the main open question concerning the double pole solu-
tions of Section 2.2 is, whether they are compatible with Hilbert space positiv-
ity. To test positivity, one would like to split correlation functions that should be
positive by Hilbert space positivity, into contributions that should be separately
positive.
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Such a decomposition is the partial wave expansion: a given correlation function
splits into contributions

〈
D(x4)C(x3)ΠλB(x2)A(x1)

〉
(6)

where Πλ are projections onto the irreducible representations λ = (d, j1, j2) of
the conformal group. Each term (6) is a coefficient times a partial wave = eigen-
function of differential operators corresponding to the three Casimir operators
(quadratic, cubic, and quartic). Positivity requires in the simplest case, that all
partial wave coefficients of correlations of the type 〈ABBA〉 in (6) must be non-
negative, and associated Cauchy-Schwarz (CS) inequalities [2]. Even without
knowing the six-point function, its mere existence imposes via CS inequalities
further nontrivial constraints on the four- and two-point functions [22].

Let us notice here that positivity enters the analysis at several stages. First of all,
the fields of the theory are subject to the unitarity bound [3]. Second, the con-
dition that the operator product expansion of two fields does not involve fields
below the unitarity bound, is reflected in bounds on the poles ∗ in the variables
ρij [1], that were implicitly used throughout Section 2. While we regard these
bounds as “kinematical”, the positivity of partial wave coefficients and the asso-
ciated CS inequalities are “dynamical” constraints which are notoriously diffi-
cult to evaluate.

It should therefore be clear that we can only test necessary conditions for pos-
itivity throughout. Even so, the partial wave analysis is not practical for higher
than four-point correlations, because the computation of the 4D partial waves
seems out of reach. We therefore seek for simpler alternatives, that might give
necessary conditions for positivity.

5.1 Positivity by Restriction

One option is to remark that restriction preserves Hilbert space positivity, since
it only amounts to limits in the test function space, see also [11]. Hence, a 4D
double pole structure must be rejected if its 2D restriction violates positivity.

Upon restriction, both the (tensor) fields will decompose into (subtensor) fields,
and the irreps will split into irreps of the subgroup. Therefore, the restriction of
a 4D partial wave is in general a sum of infinitely many 2D partial waves. To
use this as a tool, it is necessary to understand the branching rules.

The branching of representations can be computed from the characters
χ(s, x, y) = Tr sM05(xy)M12 (x/y)M34 of the representations, counting the mul-
tiplicities of the eigenvalues of the Cartan generators, see e.g., [23]. For twist
�= 2

∗Concerning these bounds, there were some inaccuracies in the admitted range of certain param-
eters around eq. (B.10) of [2]. That the partial waves are regular and the expansion formulae derived
in [2] remain valid in the corrected parameter range, was checked in [26].

179



M. Bischoff, D. Meise, K.-H. Rehren, I. Wagner

χ4D
d,j1,j2(s, x, y) =

sd · χj1(x)χj2 (y)

(1 − sx
1
2 y

1
2 )(1 − sx

1
2 y−

1
2 )(1 − sx−

1
2 y

1
2 )(1 − sx−

1
2 y−

1
2 )
,

where χj(x) = x−j + x1−j + · · ·xj−1 + xj . The restriction to 2D amounts to
equating the parameters x = y. The branching is then given by the expansion
into 2D characters

χ2D
h+,h−(p, q) = χh+(p) · χh−(q) =

ph+

1 − p
· q

h−

1 − q
,

where p = sx and q = s/x couple to the chiral generators L±
0 =

1
2
(M05 ±

M12). For instance, for the scalars j1 = j2 = 0, this gives the branching of
representations

D4D
d,0,0

∣∣
2D

=
⊕

n

(n+ 1) ·D+
(d+n)/2 ⊗D−

(d+n)/2. (7)

Since the representations are generated by corresponding fields from the vac-
uum, the multiplicity factor n + 1 in this branching can be easily understood
as counting the derivatives of the field in the restricted directions (leading to
an increase of the dimension by one unit), in accord with the rules obtained
from [6, 10]. In the general case, the factor χ j(x)2 produces more terms corre-
sponding to the decomposition of tensors into subtensors.

At twist d − j1 − j2 = 2 (j1, j2 �= 0), there are subtractions in the characters
reflecting the absence of some states due to the conservation laws (1). The fac-
tor χj1(x)χj2 (y) has to be replaced by χj1(x)χj2 (y) − sχ

j1− 1
2
(x)χ

j2−1
2
(y),

leading to a corresponding removal of some of the 2D subrepresentations.

The branching of partial waves follows a similar pattern. We consider here only
scalar fields. Since a restricted scalar field is just another scalar field, only the
decomposition of the projections in (6) matters. For the most symmetric four-
point case when A,B,C,D are scalars of the same scaling dimension d, we
found the following result.

Extracting a prefactor (ρ12ρ34)−d, the 4D partial waves depend only on the cross

ratios s =
ρ12ρ34

ρ13ρ24
, t =

ρ14ρ23

ρ13ρ24
. For twist 2k and spin (tensor rank) L = 2j1 =

2j2 of the representation λ, they are given by [24]

β4D
k,L(u, v) =

uv

u− v

(
Gk+L(u)Gk−1(v) − (u↔ v)

)
,

where the “chiral” variables u, v are algebraic functions of s, t given by s = uv,
t = (1−u)(1−v), andGn(z) = zn

2F1(n, n; 2n; z). Upon restriction toD = 2,

u and v become the chiral cross ratios u =
x12+x34+

x13+x24+
, v =

x12−x34−
x13−x24−

. The 2D

partial waves of dimension h+ + h− and helicity h+ − h− are given by

β2D
h+,h−(u, v) = Gh+(u)Gh−(v).
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Using repeatedly the identity Gn−1(z) − 1 − z/2
z

Gn(z) + cnGn+1(z) = 0,

where cn =
n2

4(4n2 − 1)
, we found the recursion [25]

β4D
k,L =

∑

m,n�0
m+n=L

β2D
k+m,k+n+ck+L β

4D
k+1,L+

[L/2]∑

ν=1

(ck+L−ν−ck+ν−1)β4D
k+ν+1,L−2ν .

For L = 0 or = 1, the last sum on the r.h.s. is empty. The 4D partial waves on
the r.h.s. can be iteratively expanded by the same formula, giving all 2D partial
waves of dimension 2k + L+ 2r in the r-th step of the iteration:

β4D
k,0 =

∑

r�0

ckck+1 . . . ck+r−1 β
2D
k+r,k+r ,

β4D
k,1 =

∑

r�0

ck+1ck+2 . . . ck+r

(
β2D

k+r+1,k+r + β2D
k+r,k+r+1

)
.

(8)

If L � 2, the last sum contains negative coefficients (because cn is mono-
tonously decreasing); but the iteration of the term ck+L β

4D
k+1,L contributes to

the same 2D partial waves, making the total coefficients positive, e.g.,

β4D
k,2 =

∑

r�0

ck+2ck+3 . . . ck+r+1

×
(
β2D

k+r+2,k+r +
ck+r+1 + ck+r − ck

ck+r+1
β2D

k+r+1,k+r+1 + β2D
k+r,k+r+2

)
.

Comparing (7) with (8), there seems to be a discrepancy, since the latter sum
runs only over integer r, i.e., half of the representations present in (8) are absent
in the restricted partial wave. This teaches us that in order to “exhaust” the full
content of representations in a restricted partial wave, one must also consider
derivatives of the fields in the restricted directions, before restricting.

In order to extend this tool to six-point functions, one would need to know six-
point partial waves. We do not know these partial waves, but it is clear that the
Casimir eigenvalue equations are much easier to access in 2D than in 4D [25].

5.2 The Exotic Restriction (Continued)

Let us resume the discussion of Section 3.3. The generators L±
0 of the 2D con-

formal group embedded into the 4D conformal group are, in this case, M 12 and
M34. Thus one should obtain the decomposition of representations by putting
s = 1, and letting xy and x/y play the role of p and q before. It is then obvious
that the expansion involves negative powers of p and q, reflecting the obvious
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fact that M12 andM34 do not have positive spectrum in 4D positive energy rep-
resentations. The expansion technique of the previous subsection fails in this
situation.

More detailed analysis of the spectrum of the two chiral Casimir operators [25]
indicates that the decomposition goes into a continuum of representations of the
Möbius groups with positive and negative unbounded spectrum of L±

0 .

5.3 Characterization of Twist 2 Contributions

Another idea to isolate parts from correlation functions that must be separately
positive, is to use the twist. This is a convenient “quantum number”, but not
an eigenvalue of any polynomial function of the Casimir operators. Yet, as the
discussion of biharmonic fields shows, the projection to the sum of all twist 2
representations

〈 · · ·Πtwist 2A
′(x)A(y)

〉
=

∑

λ:twist(λ)=2

〈 · · ·ΠλA
′(x)A(y)

〉

is, after multiplication with ((x− y)2)d−1, characterized by the very simple pair
of differential equations (2). This suggests the following potential technique.
We know that

〈
V (x, y)Πtwist 2C(x3)B(x2)A(x1)

〉
=
〈
V (x, y)C(x3)B(x2)A(x1)

〉
(9)

is a biharmonic function due to (2) for every biharmonic field V . Since by
conformal invariance, correlation functions depend essentially only on the cross
ratios, here regarded as “collective variables”, one may expect that the same in-
formation encoded in the wave operators �x and �y , can be encoded in a system
of differential operators w.r.t. the variables x1, x2, x3, annihilating 〈V CBA〉.
Then, under the reasonable hypothesis, that all biharmonic fields of the theory
generate the entire twist 2 subspace of the Hilbert space, this would imply that
the vector Πtwist 2CBAΩ solves the same equations, and so does the six-point
correlation function

〈
A(x6)B(x5)C(x4)Πtwist 2C(x3)B(x2)A(x1)

〉
.

This information can be used to compute the form of this contribution, and to
isolate the twist 2 part of a given six-point correlation 〈ABCCBA〉, because
the higher twists are less singular. If the twist 2 part fails to be positive, the
full six-point function is not positive. Ultimately, we would like to apply this
strategy to six-point double pole structures which appear in correlations of the
form 〈V CCV 〉 [4].

As a first step towards this program, we have tested the idea on four-point func-
tions [26]. So let C be the unit operator in (9). If A and B = A ′ have the
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same scaling dimension, it is obvious that the twist 2 projection selects the bi-
harmonic field VA′A, and it is also known that the wave operators w.r.t. x and y,
if expressed in terms of the cross ratios s, t, are the same as the wave operators
w.r.t. the arguments of VA′A(x2, x1). Hence, in this case the strategy works.

Less obvious is the case when dA �= dB . The difference dB − dA = 2nmust be
even by GCI, and we may assume n > 0. Writing

(x2
12)

dA+n−1 · 〈V (x, y)B(x2)A(x1)〉 = f(x, y, x2, x1),

we found [26] that biharmonicity in x and y implies the pair of equations
[
x2

12∂1·∂2 − 2(x12 ⊗x12)·(∂1 ⊗ ∂2)+2(n− 1)x12·∂2 +2(n+1)x12·∂1

]
f = 0,

and (
∂⊗n
1

)
traceless

f = 0,

i.e., a pair of differential operators w.r.t. x1 and x2 characterizing “twist 2”, as
desired. The first equation is actually equivalent to

〈V (x, y)(C − λ)B(x2)A(x1)〉 = 0,

where C is the quadratic Casimir operator and λ its eigenvalue in the scalar repre-
sentation of dimension 2. Hence, the twist 2 contribution Π twist 2B(x2)A(x1)Ω
consists of a scalar part only. This is an independent proof of Lemma 5.2 in [2]
which states that the only twist 2 contribution in the operator product expansion
of two GCI scalar fields of different dimension is the scalar d = 2 representa-
tion. The second equation is equivalent to the statement that every correlation
(x2

12)
dA+n−1〈· · ·Πtwist 2B(x2)A(x1)〉 is a homogenous polynomial in ρ1i of

order n− 1.

An illustrating free field example for n = 2 is the following. Let ϕ be the
massless free field, and Wμ a conformal vector field of dimension Δ > 3.
Then A = :WμW

μ: and B = :[(Δ − 3)W μ∂μϕ − ϕ(∂μW
μ)]2: are confor-

mal scalars of dimension dA = 2Δ and dB = 2Δ + 4. The projection Πtwist 2

acting on B(x2)A(x1)Ω amounts to the contraction of all W fields. The result
is (x2

12)−dA−1 times the vector
(
x2

12�2 − 4x12 · ∂2 + 8
)
:ϕ2(x2): Ω

which is indeed annihilated by the two differential operators above. Splitting
any correlation (x2

12)
dA+1〈· · ·B(x2)A(x1)〉 into a part in the kernel of the two

differential operators and a less singular part, uniquely selects this vector. (Inci-
dentally, in this case, the first operator is sufficient to do the job.)

6 Conclusion

We have presented a number of ideas and new techniques which might be devel-
oped into useful tools for the analysis of globally conformal invariant correlation
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functions, especially the problem of Hilbert space positivity of correlation func-
tions that cannot arise from free fields. Various side aspects, concerning the
relations between conformal QFT in four, two and one (chiral) dimensions were
also discussed.
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