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Abstract. Recently, a variant of the Bohr Hamiltonian was proposed where the
mass term is allowed to depend on the β variable of nuclear deformation. Ana-
lytic solutions of this modified Hamiltonian have been obtained using the David-
son and the Kratzer potentials, by employing techniques from supersymmetric
quantum mechanics. Apart from the new set of analytic solutions, the newly in-
troduced Deformation-Dependent Mass (DDM) model offered a remedy to the
problematic behaviour of the moment of inertia in the Bohr Hamiltonian, where
it appears to increase proportionally to β2. In the DDM model the moments
of inertia increase at a much lower rate, in agreement with experimental data.
The current work presents an application of the DDM-model suitable for the
description of nuclei at the point of shape/phase transitions between vibrational
and gamma-unstable or prolate deformed nuclei and is based on a method that
was successfully applied before in the context of critical point symmetries.

PACS codes: 21.60.Ev, 21.10.Re

1 Introduction

Critical point symmetries, as the E(5) and X(5) [1, 2] solutions of the Bohr
Hamiltonian became known, have for more than a decade described the prop-
erties of transitional nuclei and were followed by a variety of similar models
giving successful, parameter-free predictions of energy ratios and B(E2) ratios.
In one of these models [3], a Davidson potential (u(β) = β2 + β4

0/β
2) is used,

instead of the infinite square well in β, which is employed in both E(5) and
X(5), and the critical point is determined by the procedure described in the next
section. The results obtained resemble very closely those of E(5) and X(5).

The recent version of the Bohr Hamiltonian [4], where the mass term is allowed
to depend on the β variable of nuclear deformation is solved analytically using
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a Davidson potential in β and by employing techniques from supersymmetric
quantum mechanics [5]. In addition to the new set of analytic solutions, the
newly introduced Deformation-Dependent Mass (DDM) model offers a remedy
to the problematic behaviour of the moment of inertia in the Bohr Hamiltonian,
where it appears to increase proportionally to β2. In the DDM model the mo-
ments of inertia may increase at a lower rate, in agreement with experimental
data.

Recently, a solution of the DDM model with a Kratzer potential has also been
obtained [6]. The fact that the numerical results for the Davidson and the Kratzer
potentials in the DDM framework are in general of the same quality, even though
different functions for the dependence of the mass on the deformation are used
in each case, further supports the idea of a deformation dependent mass.

The purpose of this work is mainly to investigate the behaviour of the model
parameters when the approach followed previously [7] for the study of shape
transitions is applied.

2 An “Extremum” Approach to Shape Transitions

The Davidson potential was among the first potentials proposed to describe
shape changes in nuclei in a framework similar to that of the E(5) and X(5)
solutions. Although, the Bohr Hamiltonian is solved exactly with a Davidson
potential, its mere presence is not enough for a description of nuclei at the crit-
ical point, unless it is combined with the “variational” procedure, introduced
in [3, 7].

In this case, the energies are functions of the angular momentum L and of the pa-
rameter β0 (the position of the potential minimum). Upon variation of β0 (from 0
to sufficiently large values) the energy spectra change from those of the spherical
type to those of the γ-unstable type. With the addition of a harmonic oscillator
potential term around γ = 0 and the approximation followed in X(5) the re-
sulting spectra cover also the region from the spherical to the prolate-deformed
nuclei.

Then, the critical point is identified as the value of β0 that maximizes the rate
of change of each energy ratio (RL = E(L)/E(2)), in accordance with the ob-
servation that in a phase transition certain characteristic quantities change most
abruptly. Therefore, one looks for the value of β0 for which the first derivative
of RL (for each separate value of L) with respect to β0, becomes maximum and
subsequently one uses these values to calculate the “critical” energy ratios. The
method is reminiscent of the Variable Moment of Inertia (VMI) model, where an
equilibrium condition ∂E/∂J |L=const = 0 is also employed to determine the
moment of inertia J [8].

As shown below, this method can be, almost trivially, extended in the DDM
framework for the two cases of shape transitions, with the addition of an extra
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parameter. More specifically, the energy spectrum of the ground state band, in
the DDM model with the Davidson potential [4], is given by the general expres-
sion:

ε0 = a
29

4
+

1

2

√
a2 + 4k1 +

a

2

√
1 + 4k−1 +

1

4

√
(a2 + 4k1)(1 + 4k−1) + aΛ,

(1)
where

k1 = 2 + a2[5(1− δ − λ) + (1− 2δ)(1− 2λ) + 6 + Λ]

k0 = a[5(1− δ − λ) + 8 + 2Λ] (2)
k−1 = 2 + Λ + 2β4

0 . (3)

Λ originates in the angular part of the original Schrödinger equation and is, thus a
function of the angular momentum, taking a different form in the γ-unstable and
deformed cases. It should be noted that for the purposes of our work, δ = λ = 0
in the above expressions.

As can be seen, the energies, apart from the angular momentum L (through Λ)
and β0, depend also on a, which is the extra parameter that enters the formula
of the mass as a function of deformation ( [4]). Consequently, the energy is
represented graphically by a surface (Figure (1)), instead of a curve and the
extremum condition mentioned above is implemented by finding the pairs of
(a, β0)crit values that maximize the partial derivatives of RL with respect to β0,
for each value of L separately, if one wants to keep a close analogy with the
original work presented in [3]. A proper rescaling of the potential, like the one
followed in [6] may be necessary in order to lower the obtained β0’s to more
physical values.

It should be noted that in the case of the DDM with a Davidson potential a phys-
ical interpretation of a has been given, relating it to a curvature in the 5D space
of the Bohr Hamiltonian and connecting it to the 6D space of the Interacting
Boson Model (IBM) providing relevant interpretations of a in each of the three
IBM limits. A full discussion of these points can be found in [9] and [10].

In the γ-unstable case, Λ = τ(τ + 3) gives the eigenvalues of the second-order
Casimir operator of SO(5), with τ , the seniority quantum number, characterizing
the irreducible representations of SO(5). The problem of what values of angular
momentum L correspond to each value of τ is the group-theoretical problem of
the SO(5)⊃SO(3) decomposition and is described in [11,12]. In the ground state
band the correspondence takes the very simple form L = 2τ .

As shown in Figure 1 for the R4 ratio, it increases monotonically with both a
and β0 until it reaches asymptotically a certain value. For fixed values of a the
dependence on β0 exhibits an inflection point, where the derivative (with respect
to β0) becomes maximum. This trend is very clear for values of a close to zero
and becomes smoother for increasing a. This can also be seen in the nearby plot
of the partial derivative ∂RL/∂β0 surface.
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Figure 1. (Color online) R4 energy ratio surface (left) and its derivative with respect to
β0 (right) as functions of a and β0 for the γ-unstable case. The deformed case is very
similar and is not shown.

An interesting aspect is revealed when one considers the evolution of the crit-
ical values of the parameters a and β0 as L increases. As can be seen from
Figure (2a), (a)crit values remain zero for small angular momenta and jump
to some finite value at L=10. Such a behaviour is reminiscent of a phase tran-

Figure 2. (Color online) Critical values for a and β0 for the various L values in the
‘spherical to γ-unstable’ transition.
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sition [13], with L playing the role of control parameter. This abrupt change
however is not due to some discontinuity in the ∂RL/∂β0 surface. As a is, by
definition, a ≥ 0 [4], (a)crit = 0 represents the constrained maximum of the
∂RL/∂β0 surface for low values of L. At the same time, (β0)crit shows a linear
increase with L up to L = 10, after which it continues to grow linearly at a lower
rate. It should be noted that for a = 0 the results are identical to those obtained
in ref. [7].

A potential that can describe axially (prolate) deformed nuclei and still allows
exact separation of variables in the Bohr Hamiltonian is of the form [12, 14–16]

v(β, γ) = u(β) +
w(γ)

β2
(4)

where u(β) involves the Davidson potential and

w(γ) =
1

2
(3c)2γ2 (5)

represents a harmonic oscillator centered around γ = 0. The use of this in the
DDM framework yields for Λ the expression

Λ = εγ −
K2

3
+
L(L+ 1)

3
, (6)

where εγ = 6c(nγ + 1) and nγ = 0, 1, 2, ... is the number of γ-oscillation
quanta. For the ground state band which we examine here, we have K = 0 and
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Figure 3. (Color online) Critical values for a and β0 for the various L values in the
‘spherical to deformed’ transition. Dots correspond to c = 0 and open circles to c = 0.1.
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Figure 4. (Color online) Critical RL energy ratios (var) as functions of L for the ground
state band for the spherical to γ-unstable (left) and the spherical to deformed (right)
transitions, compared to the E(5) and X(5) results respectively.

nγ = 0. The cases c = 0 and c = 0.1 are examined (Figure 3) and the same
general trend of the parameters is observed as in the γ-unstable case.

The results of this procedure where a is variable are shown in Figure 4. The
same method can be applied for fixed values of the a parameter. Specifically,
it has been found that the extremum condition for a = 0.011 and a = 0.0035
reproduces the ground band RL ratios for E(5) and X(5), respectively with very
good accuracy, as Table 1 demonstrates.

Table 1. Critical RL energy ratios for the ground state band for fixed values of a, com-
pared to the E(5) and X(5) results

L a = 0.011 E(5) a = 0.0035 X(5)

4 2.19663 2.199 2.90566 2.904
6 3.58597 3.59 5.43696 5.43
8 5.16385 5.169 8.49561 8.483
10 6.92715 6.934 12.0404 12.027
12 8.87378 8.881 16.051 16.041
14 11.0025 11.009 20.5167 20.514
16 13.3126 13.316 25.4323 25.437
18 15.8041 15.799 30.7955 30.804
20 18.477 18.459 36.6061 36.611
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3 Moments of Inertia in the Deformation Dependent Mass Model

As already mentioned, the Deformation Dependent Mass model allows for a
moderation in the rate of increase of the moment of inertia from the undesirable
β2 dependence. This can be seen in Figure 5, where the moment of inertia for
the case of the Davidson potential has been plotted as a function of β.
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Figure 5. (Color online) β-dependence of the moment of inertia for the case of the David-
son potential for various values of the a parameter.

An interesting behaviour is observed if the calculated critical values of the a and
β0 parameters are used in the formula for the moment of inertia:

J =
β2

(1 + aβ2)2
(7)

As can be seen in Figure 6, the changes in the critical values with angular mo-
mentum are reflected in the respective values of the moments of inertia, making
them increase linearly up to L = 10 and decrease thereafter, when a starts taking
non-zero values. This “downbending” behaviour, although not usual, has been
observed and is mentioned in [17]. It should be noted, however, that downbend-
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Figure 6. (Color online) Moments of inertia for the critical values of a and β0 obtained
in the ‘spherical to γ-unstable’ transition (left) and the ‘spherical to deformed’ transition
(right). In the right panel, dots correspond to c = 0 and open circles to c = 0.1.
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ing in the present treatment is derived from the spectrum of only one band, the
ground band.

4 Conclusion

The Deformation-Dependent Mass (DDM) model solves not only the problem of
unphysical moments of inertia in the original Bohr Hamiltonian, but it provides
it with a richer structure, with the introduction of an extra parameter a. For
fixed values of a and the use of a previous method to obtain the critical points
within the Bohr Hamiltonian, one can reproduce the E(5) and X(5) results, while
interesting trends are observed if one leaves a to vary. These trends are the
subject of further study.
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