Systematics of 12C Emission from Superheavy Nuclei

A.M. Nagaraja1,3, H.C. Manjunatha1, K.N. Sridhar2, S. Alfred Cecil Raj3

1Department of Physics, Government College for Women, Kolar-563101 Karnataka, India
2Department of Physics, Government First Grade College, Kolar-563101 Karnataka, India
3Department of Physics, St. Joseph’s College (autonomous), Thiruchirapalli-620 002, Tamilnadu, India

Received: 4 May 2019

Abstract. We have theoretically studied the systematics of 12C emission in superheavy nuclei with $Z=104–130$. We have also compared the 12C decay half-lives with that of alpha decay and spontaneous fission. It is found that 12C decay half-lives are greater than that of alpha decay and spontaneous fission. The variation of logarithmic 12C decay half-lives with $Z^{0.6}Q^{-1/2}$ is found to be exact straight line. The superheavy nuclei which are having shorter 12C half-lives are highlighted.

PACS codes: 36.10.-k

1 Introduction

Study of exotic/cluster decay is important in the field of superheavy nuclei. There is an expectation that the decay of superheavy nuclei through the cluster emission of nuclei. The study of alpha decay and cluster radioactivity plays an important role in the identification and synthesis of superheavy elements. From the detail literature survey it has been observed theoretical as well as experimental works on the synthesis and decay modes of superheavy elements. The alpha and heavy particle decay in $Z=116-124$ was reported by Santhosh and Priyanka [1]. Manjunatha [2] studied alpha decay properties of $Z = 126$ in the range of $288 \leq A \geq 339$. Previous workers [3] extended systematics of alpha decay half-lives for exotic superheavy nuclei. Santhosh and Nithya [4] studied different decay modes of even Z superheavy isotopes. Santhosh et al. [5] reported cluster emission in $^{210–226}$Ra isotopes. Alpha decay half-lives of superheavy nuclei with $Z = 116–118$ are reported by previous workers [6]. The competition between spontaneous fission and α-decay process for superheavy...
element with \(Z = 112 \) was reported by previous researchers \[7\]. Alpha decay properties and structure of superheavy nuclei \(Z = 102–120 \) was studied by Silişteanu and Budaca \[8\]. A study on \(\alpha \)-decay rates of spherical and deformed nuclei was reported by Ni and Ren \[9\]. Nuclear lifetimes of cluster radioactivities with \(Z = 52–122 \), were empirically calculated by Poenaru et al. \[10\]. There has been several detail reports on alpha decay half-lives of superheavy nuclei \[11–24\]. From the literature survey \[25–29\], it is also observed that there was some studies on preformation probabilities of alpha decay. There were some studies reported on cluster decay and heavy particle radioactivity \[30–40\]. Some of the researchers \[41–46\], studied both alpha and cluster emission in superheavy nuclei.

The study of cluster radioactivity is important for heavy and superheavy nuclei. Most of the researchers studied the cluster radioactivity except \(^{12} \text{C} \) emission. A detail literature survey reveals that there is no systematic study of \(^{12} \text{C} \) emission in superheavy nuclei. Hence in the present work, we have theoretically studied the systematics of \(^{12} \text{C} \) emission in superheavy nuclei. This paper is organized in to three sections. First part is introduction and in the second part, we have explained the theoretical framework used in the calculations of half-lives of \(^{12} \text{C} \) emission. The results obtained in the present work are analyzed in the third section.

2 Theoretical Frame Work

The decay half-life of parent nuclei with the emission of \(^{12} \text{C} \) cluster is studied by

\[
T_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{\nu P},
\]

where \(\lambda \) is the decay constant and \(\nu \) is the assault frequency and is expressed as

\[
\nu = \frac{\omega}{2\pi} = \frac{2E_\nu}{h},
\]

where \(E_\nu \) is the empirical vibrational energy \[47\]. According to WKB approximation (Wentzel-Kramers-Brillouin) the penetration probability \(P \) through the potential barrier studied by the following equation:

\[
P = \exp \left\{ -\frac{4\pi}{h} \int_{R_a}^{R_b} \sqrt{2\mu(V_T(r) - Q)}dr \right\},
\]

where \(\mu \) is the reduced mass of fission fragments of cluster decay and alpha decay system, \(R_a \) and \(R_b \) are the inner and outer turning points and these turning points are calculated by

\[
V_T(R_a) = Q = V_T(R_b).
\]
The total interacting potential is

\[V_T(r) = V_N(r) + V_C(r) + V_l(r), \] (5)

where \(V_N(r) \) is the attractive nuclear potential, \(V_C(r) \) is the repulsive Coulomb potential and \(V_l(r) \) is the centrifugal potential. The Coulomb potential \(V_C(r) \) for cluster decay and alpha decay is given by

\[V_C(r) = Z_\alpha Z_b e^2 \begin{cases} \frac{1}{R} & (R > R_C) \\ \frac{1}{2R_c} \left[3 - \left(\frac{R}{R_c} \right)^2 \right] & (R < R_C) \end{cases}, \] (6)

where \(R_c \) is touching radial separation between fission fragments in cluster decay and alpha decay. The nuclear potential \(V_N(r) \) between cluster/alpha decay nuclei and daughter nuclei is

\[V_N(r) = 4\pi \gamma \bar{R} \Phi(\varepsilon). \] (7)

The nuclear potential intern depends upon geometry and shape of the nuclei and universal function \(\Phi(\varepsilon) \) and surface coefficient \(\gamma \) is calculated as [48]

\[\gamma = \gamma_0 \left[1 - K_s \left(\frac{N-Z}{A} \right)^2 \right] \text{MeV/fm}^2, \] (8)

where \(\gamma_0 \) is the surface energy constant and \(K_s \) is the surface asymmetry constant. \(\gamma_0 = 1.25284 \text{ MeV/fm}^2 \) and \(K_s = 2.345 \) [49]. \(\bar{R} \) is the mean curvature as

\[\bar{R} = \frac{C_1 C_2}{C_1 + C_2}, \] (9)

where \(C_1 \) and \(C_2 \) are the sussmann’s central radii of cluster/alpha nuclei and daughter nuclei, respectively. Based on droplet model [50] \(C_i \) is written as

\[C_i = c_i + \left(\frac{N_i}{a_i} \right) t_i, \quad (i = 1, 2), \] (10)

where \(t_i \) is the neutron skin and is given as

\[t_i = \frac{3}{2} r_0 \left(\frac{JJ_i - \frac{1}{12} c_i Z_i A^{-1/3}_i}{Q + \frac{9}{4} J A^{-1/3}_i} \right), \quad (i = 1, 2), \] (11)

\(r_0 \) is the radius constant and \(r_0 = 1.14 \text{ fm} \), the symmetry energy coefficient \(J = 32.65 \text{ MeV} \), \(I = (N - Z)/A \), \(c_i = 3e^2/5r_0 = 0.757895 \text{ MeV} \) and neutron skin stiffness coefficient \(Q = 35.4 \text{ MeV} \), \(c_i \) is the half-density radius of the charge distribution and it is defined as [50]

\[c_i = R_{00i} \left(1 - \frac{7}{2} \frac{b^2}{R_{00i}^2} - \frac{49}{8} \frac{b^4}{R_{00i}^4} + \ldots \right), \quad (i = 1, 2), \] (12)
Systematics of 12C Emission from Superheavy Nuclei

R_{00i} is charge radius formula and is expressed as

$$R_{00i} = 1.171A_i^{1/3} + 1.472A_i^{-1/3}, \quad (i = 1, 2).$$ \hspace{1cm} (13)

Universal proximity potential is given by [51]

$$
\Phi(\varepsilon) = \begin{cases}
-1.7817 + 0.9270\varepsilon + 0.143\varepsilon^2 - 0.09\varepsilon^3 & \text{for } \varepsilon \leq 0.0, \\
-1.7817 + 0.9270\varepsilon + 0.0169\varepsilon^2 - 0.05148\varepsilon^3 & \text{for } 0 \leq \varepsilon \leq 1.9475, \\
-4.41 \exp \left(\frac{-\varepsilon}{0.7176} \right) & \text{for } \varepsilon \geq 1.9475
\end{cases}
$$ \hspace{1cm} (14)

where $\varepsilon = s/b$ is the minimum separation between fission fragments and $b \approx 0.99$ is the nuclear surface thickness and s is the distance between the near surfaces of the fragments.

Table 1. Highlighted 12C emitters in the superheavy nuclei

<table>
<thead>
<tr>
<th>Parent nucleus</th>
<th>Daughter nucleus</th>
<th>Q_i, (MeV)</th>
<th>$T_{1/2}$, (s)</th>
<th>Parent nucleus</th>
<th>Daughter nucleus</th>
<th>Q_j, (MeV)</th>
<th>$T_{1/2}$, (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>257 107</td>
<td>245 101</td>
<td>29.63</td>
<td>24678.2</td>
<td>312 126</td>
<td>300 120</td>
<td>45.61</td>
<td>426.5356</td>
</tr>
<tr>
<td>308 123</td>
<td>296 117</td>
<td>37.90</td>
<td>397111.2</td>
<td>313 126</td>
<td>301 120</td>
<td>32.10</td>
<td>480.2658</td>
</tr>
<tr>
<td>309 123</td>
<td>297 118</td>
<td>37.87</td>
<td>8667.157</td>
<td>314 126</td>
<td>302 120</td>
<td>32.30</td>
<td>1232.562</td>
</tr>
<tr>
<td>310 123</td>
<td>298 117</td>
<td>37.68</td>
<td>41863.62</td>
<td>315 126</td>
<td>303 120</td>
<td>33.40</td>
<td>3671.034</td>
</tr>
<tr>
<td>311 123</td>
<td>299 117</td>
<td>36.89</td>
<td>33121.23</td>
<td>316 126</td>
<td>304 120</td>
<td>31.30</td>
<td>13081.06</td>
</tr>
<tr>
<td>312 123</td>
<td>300 117</td>
<td>37.55</td>
<td>43938.14</td>
<td>317 127</td>
<td>298 121</td>
<td>33.59</td>
<td>73.15606</td>
</tr>
<tr>
<td>314 123</td>
<td>302 117</td>
<td>37.92</td>
<td>532.7464</td>
<td>318 127</td>
<td>299 121</td>
<td>33.08</td>
<td>46.28831</td>
</tr>
<tr>
<td>308 124</td>
<td>296 118</td>
<td>39.96</td>
<td>55384.92</td>
<td>312 127</td>
<td>300 121</td>
<td>32.73</td>
<td>17.52527</td>
</tr>
<tr>
<td>312 124</td>
<td>300 118</td>
<td>41.44</td>
<td>20280.27</td>
<td>313 127</td>
<td>301 121</td>
<td>32.71</td>
<td>42.9559</td>
</tr>
<tr>
<td>313 124</td>
<td>301 118</td>
<td>41.85</td>
<td>44699.79</td>
<td>314 127</td>
<td>302 121</td>
<td>32.58</td>
<td>63.11274</td>
</tr>
<tr>
<td>306 125</td>
<td>294 119</td>
<td>41.32</td>
<td>16016.39</td>
<td>315 127</td>
<td>303 121</td>
<td>32.42</td>
<td>275.5344</td>
</tr>
<tr>
<td>307 125</td>
<td>295 119</td>
<td>41.76</td>
<td>11912.69</td>
<td>316 127</td>
<td>304 121</td>
<td>32.19</td>
<td>705.3964</td>
</tr>
<tr>
<td>309 125</td>
<td>297 119</td>
<td>41.72</td>
<td>2749.136</td>
<td>317 127</td>
<td>305 121</td>
<td>32.67</td>
<td>2993.247</td>
</tr>
<tr>
<td>310 125</td>
<td>298 119</td>
<td>42.32</td>
<td>683.8953</td>
<td>318 127</td>
<td>306 121</td>
<td>34.97</td>
<td>3.719666</td>
</tr>
<tr>
<td>311 125</td>
<td>299 119</td>
<td>42.98</td>
<td>747.7727</td>
<td>314 128</td>
<td>302 122</td>
<td>34.98</td>
<td>6.717327</td>
</tr>
<tr>
<td>312 125</td>
<td>300 119</td>
<td>43.83</td>
<td>1185.967</td>
<td>315 128</td>
<td>303 122</td>
<td>34.89</td>
<td>39.61285</td>
</tr>
<tr>
<td>313 125</td>
<td>301 119</td>
<td>43.66</td>
<td>3526.878</td>
<td>316 128</td>
<td>304 122</td>
<td>34.76</td>
<td>130.3004</td>
</tr>
<tr>
<td>314 125</td>
<td>302 119</td>
<td>43.96</td>
<td>8568.358</td>
<td>317 128</td>
<td>305 122</td>
<td>34.67</td>
<td>524.9683</td>
</tr>
<tr>
<td>315 125</td>
<td>303 119</td>
<td>43.66</td>
<td>30641.77</td>
<td>318 128</td>
<td>306 122</td>
<td>35.98</td>
<td>2318.064</td>
</tr>
<tr>
<td>308 126</td>
<td>296 120</td>
<td>44.47</td>
<td>2103.65</td>
<td>319 129</td>
<td>304 123</td>
<td>36.89</td>
<td>10.09031</td>
</tr>
<tr>
<td>309 126</td>
<td>297 120</td>
<td>44.60</td>
<td>977.4565</td>
<td>317 129</td>
<td>305 123</td>
<td>36.85</td>
<td>52.34164</td>
</tr>
<tr>
<td>310 126</td>
<td>298 120</td>
<td>44.92</td>
<td>646.8053</td>
<td>313 130</td>
<td>307 124</td>
<td>39.51</td>
<td>228.5082</td>
</tr>
<tr>
<td>311 126</td>
<td>299 120</td>
<td>45.74</td>
<td>199.4518</td>
<td>320 130</td>
<td>308 124</td>
<td>39.96</td>
<td>1499.252</td>
</tr>
</tbody>
</table>
3 Results and Discussion

We have studied the half-lives of 12C decay from superheavy nuclei of $104 < Z < 130$. The energy released (Q) during the 12C decay is plotted as a function of neutron number of the parent nuclei and it is shown in Figure 1. Figure 2 shows the variation of logarithmic half-lives with neutron number of parent nuclei for studied superheavy nuclei. From this figure it is found that half-lives of 12C decay is shorter for superheavy nuclei with $Z > 120$. The highlighted 12C emitters in the superheavy emitters are given in Table 1. To study the competition between the 12C decay and other dominant decay modes such as alpha decay and spontaneous fission, we have also calculated the half-lives corresponds to the alpha decay and spontaneous fission. The comparison of 12C decay half-lives with that of alpha decay and spontaneous fission are shown in Figure 3. From this figure it is found that 12C decay half-lives are greater than that of alpha decay and spontaneous fission.

The variation of logarithmic half-lives for 12C decay with mass number reveals that there is peaks correspond to the nuclei 286Fl, 297120, 301121, 301122 and 303123. These nuclei are having longer 12C decay half-lives than that of neighbour. This means these nuclei are having extra stability against 12C decay. The variation of logarithmic half-lives for 12C decay with mass number reveals that there is peaks correspond to the nuclei 286Fl, 297120, 301121, 301122 and 303123. These nuclei are having longer 12C decay half-lives than that of neighbour. This means these nuclei are having extra stability against 12C decay.

To test the validity of Geiger–Nuttall law [52] for 12C decay, we have plotted the logarithmic 12C decay half-lives with inverse of square root of energy released (Q). Figure 3 shows the variation of logarithmic 12C decay half-lives with inverse of square root of energy released (Q). From this figure it is found that variation of logarithmic 12C decay half-lives with $Q^{-1/2}$ is found to be straight line. We have also evaluated the fitting coefficients ‘a’ and ‘b’ and these are included in the Figure 4. Experimental data of branching ratios between alpha and 12C decay in superheavy nuclei are not available in the literature. To validate the present calculations, we have evaluated branching ratios for some actinide nuclei where the experimental data is available. We have compared the calculated branching ratios between alpha and carbon cluster radioactivity with that of the experiments (Ref. [53]) and this comparison is as shown in Table 2. From the detail study of variation of logarithmic half-lives with energy released (Q) and atomic number of daughter nuclei reveals that the logarithmic half-lives can be expressed linearly using $Z_d^{0.6}Q^{-1/2}$. Figure 5 shows the variation of logarithmic 12C decay half-lives with $Z_d^{0.6}Q^{-1/2}$. The variation of logarithmic 12C decay half-lives with $Z_d^{0.6}Q^{-1/2}$ is found to be exact straight line. For each superheavy element, we have expressed logarithmic half-lives in terms linear equation of $Z_d^{0.6}Q^{-1/2}$. In Figure 5, to show the exactness of the fit, we have
Figure 1. Variation of Q (MeV) with neutron number of parent nuclei.
Figure 2. Variation of logarithmic half-lives with neutron number of parent nuclei.
Figure 3. Comparison of logarithmic half-lives of ^{12}C decay with that of alpha decay and spontaneous fission. 258Rf, 286Fl, $^{297}^{120}$, $^{301}^{121}$, $^{301}^{122}$, $^{303}^{123}$.

Figure 3: Comparison of logarithmic half-lives of ^{12}C decay with that of alpha decay and spontaneous fission.
Figure 4: Variation of logarithmic ^{12}C decay half-lives with $Q^{-1/2}$ (MeV).

Figure 4. Variation of logarithmic ^{12}C decay half-lives with $Q^{-1/2}$ (MeV).
Figure 5. Variation of logarithmic of 12C decay half-lives with $Z_{d}^{0.6}Q^{-1/2}$.

$\log T_{1/2}$ (s)

$Z_{d}^{0.6}Q^{-1/2}$ (MeV)
Table 2. Comparison of calculated branching ratios between alpha and cluster radioactivity with that of the experiments (Ref. [53]).

<table>
<thead>
<tr>
<th>Emitter</th>
<th>Cluster</th>
<th>Detection System (Ref. [53])</th>
<th>Branching ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>221Fr</td>
<td>14C</td>
<td>BP1 (Ref. [53])</td>
<td>$(8.14 \pm 1.14) \times 10^{-13}$</td>
</tr>
<tr>
<td>221Ra</td>
<td>14C</td>
<td>BP1 (Ref. [53])</td>
<td>$(1.15 \pm 0.91) \times 10^{-12}$</td>
</tr>
<tr>
<td>222Ra</td>
<td>14C</td>
<td>BP1 (Ref. [53])</td>
<td>$(3.7 \pm 0.6) \times 10^{-10}$</td>
</tr>
<tr>
<td>222Ra</td>
<td>14C</td>
<td>POLY (Ref. [53])</td>
<td>$(3.1 \pm 1.0) \times 10^{-10}$</td>
</tr>
<tr>
<td>222Ra</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(2.3 \pm 0.3) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(8.5 \pm 2.5) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>E X\Delta E (Ref. [53])</td>
<td>$(5.5 \pm 2.0) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(7.6 \pm 3.0) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>E X\Delta E (Ref. [53])</td>
<td>$(6.1 \pm 1.0) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>POLY (Ref. [53])</td>
<td>$(4.7 \pm 1.3) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>SPLIT-POLE (Ref. [53])</td>
<td>$(6.4 \pm 0.4) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(7.0 \pm 0.4) \times 10^{-10}$</td>
</tr>
<tr>
<td>223Ra</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(8.9 \pm 0.4) \times 10^{-10}$</td>
</tr>
<tr>
<td>224Ra</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(4.3 \pm 1.2) \times 10^{-11}$</td>
</tr>
<tr>
<td>224Ra</td>
<td>14C</td>
<td>POLY (Ref. [53])</td>
<td>$(6.5 \pm 1.0) \times 10^{-11}$</td>
</tr>
<tr>
<td>225Ac</td>
<td>14C</td>
<td>SOLENO (Ref. [53])</td>
<td>$(6.0 \pm 1.3) \times 10^{-12}$</td>
</tr>
<tr>
<td>225Ac</td>
<td>14C</td>
<td>BP1 (Ref. [53])</td>
<td>$(4.5 \pm 1.4) \times 10^{-12}$</td>
</tr>
<tr>
<td>226Ra</td>
<td>14C</td>
<td>BP1 (Ref. [53])</td>
<td>$(3.2 \pm 1.6) \times 10^{-11}$</td>
</tr>
</tbody>
</table>

also included the residual sum of squares (RSS) and coefficient of determination (R^2). The studied systematics of 12C emission in superheavy nuclei with $Z = 104$–130 is important in the field of superheavy element.

References

Systematics of 12C Emission from Superheavy Nuclei